David Tschirschwitz

Name:David Tschirschwitz, M.Sc.
Raum:Bauhausstraße 11, Raum 009
Telefon:-
E-Mail:david.tschirschwitz[at]uni-weimar.de
Sprechstunde:Auf Anfrage
Lehre:

Deep Learning for Computer Vision (SS22, SS23)

ReTMeD - Replication and Transformation of Medical Object Detection (WS24/25)

BUWLense: AI-Powered Image-to-Image Search (SS24)

RODSL - Learning Robust Object Detection with Soft-Labels from Multiple Annotators (WS22/23)

Applied Deep Learning for Computer Vision (WS21/22)

Forschung:Human Label Variation, Object Detection, Instance Segmentation, Image Retrieval, Document Analysis and Recognition

Aktuelle Forschungsprojekte

  • VarInsightAI - Sichtbarmachung und Bewältigung realer Annotationsvariation in KI-gestützter Bildanalyse

Publications

  • D. Tschirschwitz & V. Rodehorst: Label Convergence: Defining an Upper Performance Bound in Object Recognition through Contradictory Annotations, In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025. (Accepted manuscript) [arxiv]
  • D. Tschirschwitz & V. Rodehorst: CISOL: An Open and Extensible Dataset for Table Structure Recognition in the Construction Industry, In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025. (Accepted manuscript) [Dataset][Leaderboard]
  • M. Florek, D. Tschirschwitz, B. Barz & V. Rodehorst: Efficient and Discriminative Image Feature Extraction for Universal Image Retrieval, In: Proceedings of the German Conference on Pattern Recognition (GCPR), 2024. (In print) [Repository]
  • D. Tschirschwitz, C. Benz, M. Florek, H. Norderhus, B. Stein & V. Rodehorst: Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object Detection with Repeated Labels, In: Proceedings of the German Conference on Pattern Recognition (GCPR), 2023. [arxiv][doi]
  • D. Tschirschwitz, F. Klemstein, H. Schmidgen & V. Rodehorst: Drawing the Line: A Dual Evaluation Approach for Shaping Ground Truth in Image Retrieval Using Rich Visual Embeddings of Historical Images, 7th International ICDAR-Workshop on Historical Document Imaging and Processing (HIP), 2023. [doi][DHMTIC][DHREAAL]
  • D. Tschirschwitz, F. Klemstein, B. Stein & V. Rodehorst: A Dataset for Analysing Complex Document Layouts in the Digital Humanities and Its Evaluation with Krippendorff’s Alpha, In: Proceedings of the German Conference on Pattern Recognition (GCPR), 2022. [doi] [Paper]

Supervised Theses

  • Gekeler, Ella Maria: Construction Industry Steel Ordering List (CISOL) Dataset: A Data- Driven Approach to Table Structure Recognition [Published at WACV25]
  • Florek, Morris: Efficient and Discriminative Image Feature Extraction for Multi-Domain Image Retrieval [Published at the GCPR2024 YRF]
  • Yarakaraju, Raghu Varma: Finding Image-to-Image Similarities in a Historic Humanities Corpus
  • Steinhaußen, Julian: Deep Learning for Image Registration