- Instructor: Prof. Dr. Bernd Fröhlich
- Teaching assistants
- M.Sc. Henning Gründl
- Dipl.-Medsys.wiss. Patrick Riehmann
- M.Sc. Sebastian Thiele
- Lecture schedule
- Thursday, 15:15-16:45
- First lecture on 09. April 2015
- Location: SR 015, Bauhausstr 11
- Lab class schedule
- First lab class: 21.04.2015
- Tuesday, 17:00 - 18:30 (Bachelor Students) and
18:30 -20:15 (International Masters) - All lab classes will take place in the Lint Pool, Bauhausstr 11
- Office hours by appointment only
- Target audience
- B.Sc. Medieninformatik/Mediensysteme, 6. Semester
- M.Sc. Medieninformatik/Mediensysteme
- M.Sc. Computer Science and Media (1. and 3. Semester)
- M.Sc. Human-Computer Interaction
- ECTS Credits
- 4 Credits (Mediensysteme)
- 4.5 Credits (Medieninformatik, Computer Science and Media)
German version: Visualisierung
Im ersten Teil der Veranstaltung werden die wichtigsten Verfahren und Techniken aus dem Bereich der Informationsvisualisierung für folgende Datentypen vorgestellt: multi-dimensionale und hierarchische Daten, Graphen, Zeitreihen, kartographische und kategorische Daten. Der zweite Teil beschäftigt sich mit verschiedenen Ansätzen und Algorithmen zur Visualisierung volumetrischer und vektorieller Simulations- und Messdaten. Die Veranstaltung wird englischsprachig angeboten.
News
Guest Speaker Prof. Marc Streit, Johannes Kepler University Linz, Austria
- Title: Extracting, Comparing, and Manipulating Subsets across Tabular Datasets
- Date and time: 7. July 2015, 17:00h
- Location: Digital Bauhaus Lab, 3rd floor
Grading
- In the assignment a total amount of 40 points can be achieved
- In the final project a total amount of 60 points can be achieved
- Less than 50% in the assignment is insufficient for an admission to the final project
- Less than 50% in the final project is insufficient to pass the course
Consultancy
- We will offer a consultancy before assignments and projects are due
- Location: Room 014, Bauhausstrasse 11
- We answer your questions!
Lecture notes (pdf)
The documents from last year serve as a basis and will be further developed. The lecture was recorded in 2012 and is available on the 2014 website. The video material and the lecture pdfs shall only be used to follow up on the lecture! No further redistribution is permitted. For other uses, please check with the instructor.
(accessible only from within the university network)
- Introduction to Information Visualization (7. April 2015) (pdf, video)
- Introduction to Information Visualization II (12. April 2015) (pdf, video)
- Introduction to Information Visualization III (16. April 2015) (pdf, video)
- Multi-Attribute Data (23. April 2015) (pdf, video)
- Parallel Coordinates (30. April 2015) (pdf, video)
- Categorical Data (7. May 2015) (pdf, video)
- Timeseries Data (7. May 2015) (pdf, video)
- Trees (21. May 2015) (pdf, video)
- Graphs and Networks (21. May 2015) (pdf, video)
- Maps (no lecture) (pdf, no video)
- Text and Document Visualization (2. July 2015) (pdf, sorry video did not work)
- Introduction to Scientific Visualization (no lecture, see videos from 2012) (pdf, Video1, Video2, Video3, Video4)
- Color Maps, Contours and Iso-Surfaces (lecture may follow later, see videos from 2012) (pdf, Video1, Video2, Video3)
- Direct Volume Rendering (4. June 2015) (pdf, video)
- Advanced Volume Rendering Techniques (11. June 2015) (pdf, video)
- Multi-Resolution Volume Rendering (18. June 2015) (pdf, video)
- Vectorfield Visualization (25. June 2015) (pdf, video)
Lab classes
Information visualization
- InfoVis-Framework (Eclipse-Project)
- Assignments
- Dates
- First lab class: 21.04.2015
- Final Submission: 02.06.2015 - Lint Pool
- Enroll on the list in front of the office (B11)
- Contact:
- Patrick.Riehmann(at)uni-weimar.de
- Henning.Gruendl(at)uni-weimar.de
Scientific visualization (Volume Ray Casting)
- SciVis-Framework (C++ 11 / OpenGL 3.2 Framework)
- github project
- Update: 15.06.2015 16:21
- Bugfixes
- Support for MacOS
- Visual Studio 2012 or above
- Linux or Windows (theoretically MacOS)
- OpenGL 3.2 requires at least Ivy Bridge or dedicated GPU
- Assignments
- Dates
- Starts after information visualization lab class
- First SciVis lab class: 09.06.2015
- No class 07.06.2015 (17:00-18:30) due to guest lecture of Marc Streit
- Final Submission Dates:
- 07.07.2015 (18:45 - 20:00)
- 14.07.2015 (10:00 - 11:30; 13:00 - 19:00)
- 21.07.2015 (10:00 - 11:30; 13:00 - 19:00)
- Lint Pool
- Enroll on the list in front of the office (B11)
- Start: 01.07.2015 (13:00)
- End: 07.07.2015 7pm
- Contact:
- Sebastian.Thiele(at)uni-weimar.de
Final Project
Final project
- After your assignments have been graded, you can start with your final project
- Requirements
- Design and implementation of a visualization project
- Reappraisal of the concepts presented during the course
- Procedure
- Development by individuals
- Development effort: about two weeks (80h)
- Presentation
- Demonstration of the visualization project, supported where possible by a small presentation of the implemented concepts
- Explaining of used concepts in detail
- SciVis
Data sources for the final project in information visualization
Lots of data:
- DATA.GOV: http://explore.data.gov/catalog/raw/
Further data collections:
- API Leipzig: http://www.apileipzig.de/wiki/show/Was-ist-die-API-LEIPZIG
- Open Platform: http://www.guardian.co.uk/open-platform
- Developer Network: http://developer.nytimes.com/
- London Datastore: http://data.london.gov.uk/
IEEE Visualization 2004 Contest: Data Set (used for teaser)
Grading
- In the assignments a total amount of 40 points can be achieved
- The following scheme lists the grades depending on the percentage of the achieved points (assignments + final project = 100 points):
- 1.0 >=95.0
- 1.1 [93.5-95.0)
- 1.2 [92.0-93.5)
- 1.3 [90.5-92.0)
- 1.4 [89.0-90.5)
- 1.5 [87.5-89.0)
- 1.6 [86.0-87.5)
- 1.7 [84.5-86.0)
- 1.8 [83.0-84.5)
- 1.9 [81.5-83.0)
- 2.0 [80.0-81.5)
- 2.1 [78.5-80.0)
- 2.2 [77.0-78.5)
- 2.3 [75.5-77.0)
- 2.4 [74.0-75.5)
- 2.5 [72.5-74.0)
- ...
- 3.0 [65.0-66.5)
- ...
- 4.0 [50.0-51.5)
- Less than 50% is insufficient for an admission to the final project.
- Contributions to the final grade
- assignments: 40%
- final project: 60%