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Abstract 

 

Given current shortages of skilled labour in the construction industry, this paper presents a study on the feasibility and application of 

an image-based, automated approach for construction site monitoring and documentation using machine learning methods. The study 

concentrates on object detection based on images of a specific construction site, taken multiple times a day periodically over the 

course of a year, that have been evaluated using the YOLOv8 technology, thus enabling progress monitoring for selected elements. 

Training and validation data have been created from annotated images for the object detection, which was accompanied by an 

evaluation of the chosen hardware and the observation viewpoint for future reference in the data acquisition. Further, a ground truth 

for the construction progress was generated manually to allow comparison with the results achieved by the machine learning 

approach. 

This study demonstrated, that the expected results were achieved without the need for writing a single line of code, which is 

meaningful given the aforementioned labour shortages in the construction industry and highlights the fast-paced nature of the machine 

learning field. 
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1 Introduction 

Image-based monitoring of construction sites using machine learning technology can be a feasible approach to assess 

different stages of construction. If implemented thoroughly, it can address labour shortages by making the process more 

transparent and therefore more robust as well as supporting decision making and facilitating documentation. To ensure 

this application of machine learning, two main factors must be examined: Trust in the results and the threshold level for 

implementation. With these goals in mind, an experiment was undertaken to confirm results from a Convolutional 

Neural Network (CNN). For this, a data set (described in 2.3) consisting of recurring pictures of a construction site over 

the period of a year was used to train a CNN (described in 2.2. as well as 3). To enable an assessment of the object 

detection results achieved by the CNN, a so-called ground truth of the construction process was manually generated. 

Through the comparison of the CNN results of the object recognition with the human-generated construction process, 

the construction of specific parts (columns) on the construction site illustrates the CNN results and where they deviate 

from the human-generated ones.  

The other aspect of a broad application of machine learning in the field of construction monitoring is addressed by 

the tools applied to this experiment: The criteria for choosing the CNN as well as all adjacent tools was a strict ‘no 

coding’ policy, given that traditional construction personnel has no programming experience. 

2 Background 

In the Background section, the key background information for Object Detection is explained (2.1), and the technologies 

chosen in the experiment are outlined (2.2). Further, the used data is described in section 2.3. 

 

 

2.1 Object Detection  

Before the detection of the objects can begin, the object itself needs to be defined. In this experiment, the use case of 

target-actual comparison was chosen to demonstrate the efficiency of image-based monitoring using machine learning 

technology to analyse the state of construction. To exemplify the process analysis, the columns in their different 
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construction stages were selected. The process was classified into four states: ‘connecting reinforcement installed’, 

‘reinforcement cage installed’, ‘formwork elements installed’, and ‘completion of the column’, as described in Table 1.  

For image-based monitoring, a special kind of artificial neural network (ANN) was used. ANNs are computer-based 

systems inspired by biological nervous systems, consisting of many connected artificial neurons. The basic idea behind 

ANNs is that they receive information, process the given information, and forward the processed information to other 

neurons [1]. While in ANNs, the neurons are all connected to each other, the neurons in CNNs are partly connected to 

the other layers in the system. This local connection enables the CNN to capture spatial information more effectively 

and hierarchically learn features in images [1]. In contrast to conventional ANNs, the neurons in the layers of a CNN 

are organized three-dimensionally. These dimensions encompass the spatial dimensions of height and width, as well as 

depth. This promotes the effectiveness of pattern recognition in images. In this context, depth does not refer to the total 

number of layers in the network but rather to the third dimension of an activation volume. Each element in the depth of 

the activation volume represents a specific feature map or filter specialized in a particular feature pattern [2]. 

Usually, the basic structure of a CNN comprises three layers. In the input layer, the data to be processed is input. In 

the hidden layers, also called intermediate layers, decisions are made, influencing the final result. The output layer 

provides the ultimate output of the network [3].  

There are different learning paradigms for neural networks, including supervised and unsupervised learning. In 

unsupervised learning, no labels are used, and the network attempts to recognize patterns and structures in the input 

data by minimizing or maximizing a cost function. In supervised learning, the network is provided with pre-labelled 

input data along with corresponding goals or labels. Based on this, the network tries to learn a function that maps the 

input data to the correct targets. For supervised learning, a sufficiently large training dataset must be provided to the 

network. The size depends on how complex and variable the objects to be recognized are. In this experiment, the 

supervised learning paradigm was utilised [3] .  

For annotation, simple bounding boxes were used to define the position and extent of the objects to be detected. In 

addition to the bounding boxes, there are more detailed annotation options, such as polylines, which were excluded due 

to their time intensity. The bounding boxes were placed as accurately as possible, with little margin, to enable the 

detection to be as precise as possible. All annotated images come from the same pool, which was later used as the basis 

for training the YOLO model. 

 

2.2 Chosen Technology  

The CNN system used in this experiment is YOLO (You Only Look Once) version 8 (YOLOv8) [4]. It was selected 

because of its capabilities to detect objects in images or videos in real-time. To implement and conduct object detection, 

the manufacturer’s platform was utilized, where various network sizes, such as ‘nano (N)’, ‘medium (M)’, and ‘small 

(S)’, were provided. Larger networks were not tested in this experiment. These network sizes indicate the number of 

hidden layers present in a CNN. The number of hidden layers can vary and depends on the complexity of the task [3]. 

To train the YOLOv8 model, the Google Colab platform was utilized (described in 3.2). 

For the annotations, CVAT (Computer Vision Annotation Tool) was used to annotate and label data for the 

subsequent supervised learning step [5]. CVAT offers the advantage of being freely available and supports a variety of 

annotation types, including bounding boxes for object localization. Due to the absence of specific files (yaml ending) 

in the import from the annotation tool CVAT to the object recognition platform YOLO, information about the data's 

location, the number of classes, and their labels were missing (configuration data). As a result, this information had to 

be added manually to ensure that the model could be trained correctly. 

 

 

2.3 Used Data 

The object under consideration is a construction site of a multistorey building in a German city. For the following 

analysis, the focus was placed on the basement and the construction of reinforced concrete components (more precisely 

on the column construction). 

The data used in this experiment comprises a storage capacity of approximately 75.7 GB, which corresponds to 

around 35,000 images. The storage volume includes images in the order of 3-3.1 MB per daytime image and around 1 

MB for night images. The construction site was subdivided into two areas both for the ground truth generation and the 

YOLO results, as a division in the actual construction processes between these two areas (the back area represents area 

1, the front area 2) can be recognised over time.  
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The choice of analysing the column production process is based on the visibility of most of the components from the 

camera position. Compared to the walls, for example, the step of the formwork elements can be identified more clearly. 

In addition, the analysed area was also limited to area 1 to avoid any distorted results. The images were captured and 

stored at 15-minute intervals over the course of a year. Through appropriate data management, the required storage size 

can be further reduced accordingly (e.g., elimination of night images). The images document the progress of the 

construction site and were taken from a position next to the excavation pit. Fig. 1 shows an example of the analysed 

construction site. 

 

 
 

Fig. 1. Example image of the area under consideration, already including bounding boxes. 

3 Implementation 

In the implementation step, the states to be analysed are defined at the beginning. Comparative data, which is 

subsequently used to categorise the results, is recorded and documented using an excel file (3.1). In the next step, the 

existing data is integrated into the machine learning platform. The model was trained with the labelled training set 

accordingly in order to be deployed on the other images (3.2). Finally, the results generated by YOLOv8 are presented 

in 3.3. 

 

3.1 Generating a ground truth 

To analyse construction processes on a specific construction site, a shared understanding of the undergone (sub-) 

processes is required: ‘A process is understood to be the totality of interacting processes within a system’ [6]. 

Part of the control and optimisation of processes is the analysis and documentation of used resources (material, 

energy, and information) as well as the monitoring of progress within the process. The aim is to optimise the provision 

and use of available resources and to complete the process or component on time [6]. Machine learning can be a 

supporting tool in the control and optimisation of these processes. 

For the documentation and analysis of column production, the following activities and states were identified with the 

help of existing images and the technological knowledge about the production of reinforced concrete work, as shown 

in Table 1. These were used to define the sub-processes relevant to the production of columns. Due to the time intervals 

between individual images (15 minutes), the activities (A1-A4) were not considered, and the focus was primarily placed 

on the construction stages (S1-S4). The choice of construction stages can also be explained by the fact that a hard-

output-oriented description [7] can be used for the subsequent analysis with the support of machine learning. 
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Table 1. Process steps and construction stages used for the recognized object ‘column’. 

No. Description 

A1 Installing the connecting reinforcement  

S1 Connecting reinforcement installed 

A2 Production of the reinforcement cage and connection to the corresponding connecting reinforcement 

S2 Reinforcement cage installed 

A3 Formwork elements are installed around the reinforcement cages 

S3 Formwork elements installed 

A4 Concreting, formwork removal and curing of the column 

S4 Completion of the column 

A = activity, S = state of construction 

 

Ground truth data in the form of a detailed schedule of the construction processes and sub-processes was used to 

categorise the results achieved by the machine learning approach. The ground truth data, consisting of a detailed, daily 

time schedule of the identified construction works (columns) within the considered area, was created manually. Fig. 2 

shows the change in columns over time. In the illustration, the emphasis is on the number of columns in the 

corresponding construction stages. 

 

 
Fig. 2. States of construction for the recognized object ‘column’. 

3.2 Machine Learning Application  

The YOLOv8 model was trained on the Google Colab platform, given that functions from a powerful graphics 

processing unit (GPU) were necessary for the recognition. The required GPU memory, usually around 12 GB, depends 

on the complexity of the training data and the desired model accuracy. By using the chosen platform, the training process 

was performed in a cloud infrastructure that offers scalability and resource efficiency. The model size chosen for this 

study was designated as ‘S’ (small) and a careful testing and optimisation process followed to find a balance between 

performance and resource consumption. Iterative training and testing procedures were carried out, with performance 

evaluation performed on a selected set of images. 

In the context of the ‘S’ size model, clear trends emerged in object recognition. Excessive identification of 

connecting reinforcements was observed, while the detection of closed columns was found to be insufficient. The 

‘reinforcement cage installed’ (S2) and ‘formwork elements installed’ (S3) classes showed comparable recognition 

quality, with an average maximum probability of 91.6 % for object recognition. 

The evaluation of the different models showed that the model of size ‘S’ outperformed the others and showed a 

commendable balance between accuracy and resource utilisation. To further improve the performance of the model, 

various tuning options were explored. In particular, larger installed models were prone to overfitting, which affected 

their ability to generalise features and apply them to unknown data. To reduce overfitting, the complexity of the ANN 

had to be reduced [1]. 
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Another key setting parameter was confidence, which indicates the reliability of the model in recognising objects. 

Empirical tests and comparative analyses showed that a confidence level of 12.5 % results in optimal recognition 

performance for number plates [8]. The Intersection over Union (IoU) setting, which indicates the correspondence 

between the recognised bounding box and the manually defined bounding box, was left at 25 % in this study and enabled 

a robust evaluation of the object recognition [9]. 

 

3.3 YOLOv8 Results  

The analysed domain parallels human analysis, with images retained in their unaltered state. Consequently, no image 

processing, such as adjustments to brightness or contrast, was executed. The relevance of natural illumination guided 

image selection, precluding the inclusion of images with pronounced contrast or shadowed regions encroaching upon 

the analysis area, given that no construction work takes place in the dark. Recognition quality was deemed susceptible 

to shadows or nocturnal images, although such factors did not result in complete failure or non-detection of objects. To 

maintain standardisation, images captured within a specific time window (04:30 a.m. to 07:00 p.m., as per metadata) 

were chosen. Furthermore, image subsections were not provided, eliminating predefined boundaries for object location 

in subsequent analyses, thereby mitigating potential distortions. Notably, explicit definitions are warranted for elements 

like formwork at the construction site periphery, detailing the extent to which these should factor into the evaluation. 

Aligning with human evaluation standards, identical classes were employed. Emphasis was placed on achieving a 

hard-output-oriented description and measurability to ensure clarity and unambiguous results. Fig. 3 shows the results 

of the object recognition within the employed platform illustratively.  

While objects were theoretically recognized, variations in recognition reliability were discerned among different 

classes. The expectation for classes such as ‘connection reinforcement installed’ (S2) and ‘completion of the column’ 

(S4) to exhibit maximum column count was not uniformly met. Conversely, classes like ‘formwork elements installed’ 

(S3) and ‘completion of the column’ (S4) demonstrated heightened certainty in correct recognition. 

 
Fig. 3. Output from the Ultralytics-platform with results. 

In summary, the image evaluation process was semi-automated, requiring methodological decisions. Despite 

encountering limitations and challenges, a foundational object recognition capability was attained. Recognition 

reliability, however, exhibited variability across distinct classes. The outcomes were notably influenced by perspective 

and material utilisation. The insights derived from this analysis serve as a groundwork for subsequent investigations 

and the refinement of future evaluation methodologies. 

4 Comparison of YOLOv8 Results with Ground Truth  

The results from the comparison between the ground truth data and the ‘generated’ results using machine learning show 

that all four classes/construction stages (S1-S4) were not fully recognised (see Fig. 4). As part of the study, 299 objects 

were correctly recognised with machine learning. A total of 91 objects were recognised incorrectly or not at all.  
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A further 87 objects were under-recognised in the experiment in relation to the comparison data. This indicates that 

machine learning has potential for improvement.  

These results suggest that the support provided by machine learning is not yet optimal and that corresponding potential 

for improvement needs to be tested to find the precise necessary adjustments. 

 
Fig. 4. Difference in the number of recognized classes. 

The ‘formwork elements installed’ (S3) and ‘completion of the column’ (S4) classes are nonetheless used to analyse 

and document construction progress. It was found that more columns were recognised (13 in total) than were planned 

according to the original design (ground truth data: 12 columns). One possible cause can be attributed to e.g., 

inconsistent planning data. In this case, more columns were produced on the construction site than the original planning 

had anticipated. This particular column was therefore not included in the manual analysis. Nevertheless, a clear tendency 

can be recognised from the available data, as the graphs of the detected columns are close together or overlap. It would 

therefore be conceivable to report on this indicator. Despite the described differences, clear trends could be recognised 

through this experiment. This can be argued by the overlapping or slight deviations (or something similar). 

 

 
Fig. 5. Recognized formworks per day. 

The highest agreement between human evaluation and machine learning was found in the ‘formwork elements installed’ 

(S3) class (see Fig. 5). Only three misclassifications were recognised in this class over the entire observation period. In 

addition, all formwork elements used (also in different types) were recognised, which can be seen as a positive result. 

Fig. 5, which shows both the manually (ground truth) and automatically (YOLOv8 results) recognised formwork 

objects, shows that no formwork could be identified at day 25, even though it is clear from the ground truth, that 

formworks had already been built on that date. One possible cause could be, i.e., that formwork elements in the rear 
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area could be concealed by occlusion from existing reinforcement cages. As a result, the columns and formwork in the 

background would not be recognised. Fig. 6 shows the same graph for columns. 

 
Fig. 6. Completed columns per day. 

The ‘connecting reinforcement installed’ (S1) class showed the least agreement between human evaluation and machine 

learning. Particularly at the beginning of the evaluation, significant discrepancies to the actual value were found, with 

a total of nine unrecognised connection reinforcements. The achieved results can be deemed unsuited for the aimed use 

case of construction progress monitoring. As shown in Fig. 7, the only common result between ground truth (manually 

graph) and the YOLOv8 results (automatically graph) is the recognition on day 37, from which on there are no more 

connecting reinforcements on the construction site. Recognising the connecting reinforcement understandably poses a 

particular challenge, as they only protrude a few centimetres from the floor slab and can easily be concealed by other 

objects. In addition, their colouring is very similar to the underlying floor slab. The increase in recognised connecting 

reinforcements towards the end of the evaluation could not be logically explained and could be due to incorrect 

recognition by other objects, such as reinforcements for walls. 

 

 

Fig. 7. Number of recognized connection reinforcements per day. 

5 Conclusion and Outlook 

The experiment investigated the extent to which machine learning, in this particular case object detection results from 

the YOLOv8 technology, can be employed for construction site progress monitoring, mainly through detection of 

individual construction stages of defined components. 
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In general, it was established that object detection on the chosen data set can be achieved and the respective construction 

stages could be identified using the example of the column construction process. Differences were identified between 

the detection of individual construction stages (in YOLOv8: classes). As considered in more detail in Section 4, the 

formwork class showed the greatest match with the comparison data (ground truth data). On the other hand, there were 

differences between the ground truth data and the results from YOLOv8 in the construction stages ‘connecting 

reinforcement’ and ‘reinforcement’. 

These findings demonstrate the potential of object detection with the support of machine learning for construction 

site progress monitoring. Moreover, it illustrates not only that, but also how it can be achieved without any coding, thus 

dismantling a presumed threshold implementation barrier.  

For the future practical application and implementation in daily tools of construction project management or 

construction supervision, it is necessary to automatically analyse a minimum number of images. The increased use will 

result in corresponding time savings as the number of analysed images increases. With a small number of images, 

manual evaluation is more efficient, as the initial training and definition of the classes is correspondingly more time-

consuming (‘initial investment’). On a side note, the conducted experiment showed that recognition with machine 

learning was possible after around 30 images, validating the general assumption, that the actual manual recognition is 

more time-consuming than the automated, machine learning approach. An additional programming-based 

implementation, e.g., Python-based, can be used in a subsequent experiment to further investigate the extent to which 

this addition influences time saving. 

This study rests upon the utilization of image material generated for the specific objectives set out for this study, but 

without previous knowledge of machine learning specifics. The application of machine learning within this study is 

confined to a discrete subset of images, employed both for the training of the model and subsequent evaluation 

processes. To augment result accuracy in future analyses, the used dataset should be extended. This extension should 

encompass diverse construction site viewpoints to prevent some of the encountered limitations (e.g., occlusions). The 

incorporation of different construction sites could address the generalizability of the developed models, thereby 

enhancing their efficacy in practical applications as well as their robustness. 

Future studies should prioritise an examination of the transferability of the developed models to projects beyond the 

scope of the training dataset. Scrutiny of the extent to which the trained network can be seamlessly applied to distinct 

construction sites without requiring specialized retraining is essential. The objective of this evaluation should be 

authenticating the applicability of the developed models in varied contexts and ascertaining their general validity for 

construction site progress monitoring. Another focus of future investigations should be the systematic analysis of 

viewpoint perspectives and its consequential effects on the accuracy of the object recognition. 
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