Graph Algorithms
 Minimum Spanning Trees \& Shortest Paths

Francesco Andreussi
Bauhaus-Universität Weimar

24 May 2019

Fakultät Medien

Minimum Spanning Tree

What is it?

Minimum Spanning Tree

What is it?
It is the graph considering only the set of edges of minimal weight that connects together all the nodes of a graph. As a consequence, the graph is acyclic, and it can be called a tree.

Kruskal Algorithm

Pseudocode

```
MST-KRUSKAL(G):
    A = emptySet
    foreach v in G.V:
    MAKE-SET(v)
    SORT-WEIGHTS(G.E)
    foreach (u,v) in G.E:
    if SET(u) != SET(v):
        A.add({(u,v)})
        UNION(u,v)
    return A
```

G is a weighted graph.
sort the edges $G . E$ in a
NON-decrescent way w.r.t. their weights
if u and v are in different sets, put the edge in A and unite their sets
$A=$ set of edges defining the MST

Kruskal Algorithm

Fig. 1: Find by hand the MST using Kruskal

Prim Algorithm

Pseudocode

```
MST-PrIM (G,r) :
    foreach u in G.V:
    u.key = INFINITY
    u.parent = NIL
    r.key = 0
    Q = G.V
    while Q != emprySet:
    u = EXTRACT-MIN(Q)
    foreach v in u.Neighbours:
        if v in Q
            && w(u,v)<v.key:
            v.parent = u
            v.key = w(u,v)
```

G is a weighted graph and r is the first node
Q is a min-heap
if v is not fully analysed and a better way of reaching it, update its values

Prim Algorithm

Fig. 2: Find by hand the MST using Prim

Single-Root Shortest Paths

What is it?

Single-Root Shortest Paths

What is it?

The problem of finding the Single-Root (or Single-Source) Shortest Paths has, as its goal, the computation of the shortest (lighter) path from a given node v in a graph $G(V, E)$ to all the others.

Single-Root Shortest Paths

What is it?
The problem of finding the Single-Root (or Single-Source) Shortest Paths has, as its goal, the computation of the shortest (lighter) path from a given node v in a graph $G(V, E)$ to all the others.
An algorithm that answers to this question can also solve the following problems: Single-Destination Shortest Paths, Shortest Path Between Two Nodes and Shortest Paths Every Pair of Nodes and it has no theoretical limitation w.r.t. the type of graph (actually, there can be algorithm-specific restrictions).

Relaxing an Edge

An edge is relaxed when it is possible to reach an already discovered node from the same source following a lighter path.
In that case the distance from the source is updated with the new value, as well as the "reference to the parent/preceder" of the considered node.

```
\(\operatorname{RELAX}(u, v, w):\)
    if \(v . d i s t>w(u, v)+u . d i s t:\)
    \(v\). parent \(=u\)
    \(v . d i s t=w(u, v)+u . d i s t\)
```


Bellman-Ford Algorithm

Pseudocode

This algorithm is designed to deal with directed weighted graphs; it fails when a negative weighted cycle is detected.

BELLMAN-FORD (G, s) :
foreach u in G.V:
u.dist = INFINITY
u.parent $=$ NIL
s.dist $=0$
for $i=1$ to $|G . V|-1$:
foreach (u,v) in G.E:
$\operatorname{RELAX}(u, v, w(u, v))$
foreach (v, v) in G.E: after this cycle either an edge can be
if $v . d i s t>w(u, v)+u$.dist: relaxed (there is a negative cycle), or return FALSE
return TRUE
G is a weighted graph and s is the chosen source
check $|G . V|-1$ times if every edge can be relaxed the nodes have the correct path information for solving the problem

Bellman-Ford Algorithm

Fig. 3: Find by hand the Shortest-Paths from A using Bellman-Ford

Bellman-Ford Algorithm

Solution

Fig. 4: dist and parent values for each of the |G.V|-1 execution of main cycle, in red the relaxed edges for each iteration

Thanks for the Attention!

