
Graph Algorithms
Minimum Spanning Trees & Shortest Paths

Francesco Andreussi

Bauhaus-Universität Weimar

24 May 2019

F. Andreussi (BUW) Graph Algorithms 24 May 2019 1 / 12

mailto:francesco.andreussi@uni-weimar.de
https://www.uni-weimar.de/en/media/chairs/computer-science-department/computer-graphics/teaching/algorithms-and-data-structures/

Minimum Spanning Tree

What is it?

It is the graph considering only the set of edges of minimal weight that
connects together all the nodes of a graph. As a consequence, the graph is
acyclic, and it can be called a tree.

F. Andreussi (BUW) Graph Algorithms 24 May 2019 2 / 12

Minimum Spanning Tree

What is it?
It is the graph considering only the set of edges of minimal weight that
connects together all the nodes of a graph. As a consequence, the graph is
acyclic, and it can be called a tree.

F. Andreussi (BUW) Graph Algorithms 24 May 2019 2 / 12

Kruskal Algorithm
Pseudocode

MST-Kruskal(G) :

A = emptySet

foreach v in G.V :

MAKE-SET(v)

SORT-WEIGHTS(G.E)

foreach (u,v) in G.E :

if SET(u) != SET(v) :

A.add({(u,v)})

UNION(u,v)

return A

G is a weighted graph.

sort the edgesG.E in a
NON-decrescent way w.r.t. their
weights

if u and v are in different sets, put
the edge in A and unite their sets

A = set of edges defining the MST

F. Andreussi (BUW) Graph Algorithms 24 May 2019 3 / 12

Kruskal Algorithm

Fig. 1: Find by hand the MST using Kruskal

F. Andreussi (BUW) Graph Algorithms 24 May 2019 4 / 12

Prim Algorithm
Pseudocode

MST-Prim(G,r) :

foreach u in G.V :

u.key = INFINITY

u.parent = NIL

r.key = 0

Q = G.V

while Q != emprySet :

u = EXTRACT-MIN(Q)

foreach v in u.Neighbours :

if v in Q

&& w(u,v) <v.key :

v.parent = u

v.key = w(u,v)

G is a weighted graph and r is the
first node

Q is a min-heap

if v is not fully analysed and a better
way of reaching it, update its values

F. Andreussi (BUW) Graph Algorithms 24 May 2019 5 / 12

Prim Algorithm

Fig. 2: Find by hand the MST using Prim

F. Andreussi (BUW) Graph Algorithms 24 May 2019 6 / 12

Single-Root Shortest Paths

What is it?

The problem of finding the Single-Root (or Single-Source) Shortest Paths
has, as its goal, the computation of the shortest (lighter) path from a
given node v in a graph G(V,E) to all the others.
An algorithm that answers to this question can also solve the following
problems: Single-Destination Shortest Paths, Shortest Path Between
Two Nodes and Shortest Paths Every Pair of Nodes and it has no
theoretical limitation w.r.t. the type of graph (actually, there can be
algorithm-specific restrictions).

F. Andreussi (BUW) Graph Algorithms 24 May 2019 7 / 12

Single-Root Shortest Paths

What is it?
The problem of finding the Single-Root (or Single-Source) Shortest Paths
has, as its goal, the computation of the shortest (lighter) path from a
given node v in a graph G(V,E) to all the others.

An algorithm that answers to this question can also solve the following
problems: Single-Destination Shortest Paths, Shortest Path Between
Two Nodes and Shortest Paths Every Pair of Nodes and it has no
theoretical limitation w.r.t. the type of graph (actually, there can be
algorithm-specific restrictions).

F. Andreussi (BUW) Graph Algorithms 24 May 2019 7 / 12

Single-Root Shortest Paths

What is it?
The problem of finding the Single-Root (or Single-Source) Shortest Paths
has, as its goal, the computation of the shortest (lighter) path from a
given node v in a graph G(V,E) to all the others.
An algorithm that answers to this question can also solve the following
problems: Single-Destination Shortest Paths, Shortest Path Between
Two Nodes and Shortest Paths Every Pair of Nodes and it has no
theoretical limitation w.r.t. the type of graph (actually, there can be
algorithm-specific restrictions).

F. Andreussi (BUW) Graph Algorithms 24 May 2019 7 / 12

Relaxing an Edge

An edge is relaxed when it is possible to reach an already discovered
node from the same source following a lighter path.
In that case the distance from the source is updated with the new value,
as well as the “reference to the parent/preceder” of the considered node.

RELAX(u,v,w) :

if v.dist > w(u,v) + u.dist :

v.parent = u

v.dist = w(u,v) + u.dist

F. Andreussi (BUW) Graph Algorithms 24 May 2019 8 / 12

Bellman-Ford Algorithm
Pseudocode

This algorithm is designed to deal with directed weighted graphs; it fails
when a negative weighted cycle is detected.

BELLMAN-FORD(G,s) :

foreach u in G.V :

u.dist = INFINITY

u.parent = NIL

s.dist = 0

for i =1 to |G.V |-1:

foreach (u,v) in G.E :

RELAX(u,v,w(u,v))

foreach (v,v) in G.E :

if v.dist > w(u,v) +u.dist :

return FALSE

return TRUE

G is a weighted graph and s is the
chosen source

check |G.V |-1 times if every edge
can be relaxed

after this cycle either an edge can be
relaxed (there is a negative cycle), or
the nodes have the correct path
information for solving the problem

F. Andreussi (BUW) Graph Algorithms 24 May 2019 9 / 12

Bellman-Ford Algorithm

Fig. 3: Find by hand the Shortest-Paths from A using Bellman-Ford

F. Andreussi (BUW) Graph Algorithms 24 May 2019 10 / 12

Bellman-Ford Algorithm
Solution

Fig. 4: dist and parent values for each of the |G.V |-1 execution of main
cycle, in red the relaxed edges for each iteration

F. Andreussi (BUW) Graph Algorithms 24 May 2019 11 / 12

Thanks for the Attention!

F. Andreussi (BUW) Graph Algorithms 24 May 2019 12 / 12

