
Computer Graphics:
5-The Graphics Pipeline

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de



Introduction

• Themes of the this lesson(s) will be:
– A trip down the Graphics pipeline
– Detailed information on some of its stages



Graphics Pipeline

• What is the graphics pipeline?
– Given an idea, we want to

• Model the idea into
– Geometry
– Surface properties
– Maybe model

movement (for
animation)

• Generate pictures out of
these models

– Computer Graphics people
have defined a workflow for
generating pictures

– Repeat over and over for
each rendered picture one of
a scene or animation

– This process is done in
stages, just like at a car
factory

C
o
p
yr

ig
h
t 

©
 1

9
6
8

T
o
yo

ta
 M

o
to

r 
C
o
rp

o
ra

ti
o
n



Graphics Pipeline: Overview

• The Graphics Application pipeline

Application Geometry Rasterization

• Supplies geometric
data:

– points,
– polygons,
– Curves

• Converts into triangles

• Apply transformations
• Shading
• Clipping

• Fill pixel by pixel
surviving triangles

• Uses interpolation on
vertex data

• Let us explain these different stages



Graphics Pipeline: Supply geometric data

Pipeline: Application
Supplies geometric data

Geometry Rasterization

Converts into triangles

Apply transformations

Shading

Clipping

Interpolate:
lighting+texture

Convert triangles 2 pixels

C
ou

rte
sy

 ©
 R

hi
no

3D

• Modeling application supplies:
– Objects
– Lights
– Surface properties:

• Colour: basic colour, diffuse
and specular reflection

• Textures
• Surface characteristics:

bumps, transparency



Graphics Pipeline: Convert into triangles

Pipeline: Application
Supplies geometric data

Geometry Rasterization
Apply transformations

Shading

Clipping

Interpolate:
lighting+texture

Convert triangles 2 pixels

C
ou

rte
sy

 ©
 c

ga
l.o

rg

• First thing:
– Everything triangles!

• Why?
Simple!
– They are polygons
– They have always the same

number of sides and vertices
– This will get us into some

trouble later…

Convert into triangles



Graphics Pipeline: Apply transformations

Pipeline: Application
Supplies geometric data

Rasterization

Shading

Clipping

Interpolate:
lighting+texture

Convert triangles 2 pixels

• Second thing:
– Unify coordinate space, from

object to world
• Third thing:

– Convert to screen (camera)
coordinates

Convert into triangles

Geometry
Apply transformations

C
ou

rte
sy

 ©
 W

ik
ip

ed
ia

2

2

3



Graphics Pipeline: Shading

Pipeline: Application
Supplies geometric data

Rasterization

Clipping

Interpolate:
lighting+texture

Convert triangles 2 pixels

• Shading concerns simulating
the interaction of light with the
objects.

• The interaction is ruled by the
illumination equation, which
describes the resulting colour
of the object.

• In its simplest form, one
illumination value per triangle
is computed

• But how is it computed?
– To know this, we have to

digress a bit…

Convert into triangles

Geometry
Apply transformations

Shading

C
ou

rte
sy

 ©
 b

le
nd

er
.o

rg



Illumination models

• There are two types of
illumination models in Computer
Graphics
– Local illumination models:

• Light reflected by a surface (and
therefore its colour) is
dependent only on the surface
itself and the direct light sources

– Global illumination models:
• Light reflected by a surface is

dependent only on the surface
itself, the direct light sources,
and light which is reflected by
the other surfaces on the
environment towards the
current surface



Lights

• To illuminate a surface, light is
needed

• Two major models for light
sources
– Point light sources

• By putting point light source at
∞ one can simulate solar light

• Diffusion cone can be restricted
to simulate spotlights (use
additional filter function for
dimming light)

– Area light sources (distributed)



Illumination models

• For any object in the environment, a shading function describing
how its surface reacts to light is necessary

• For the enviroment, an illumination model is used, which
determines what parts of the shading functions are used while
rendering the scene

• This illumination model is expressed through an illumination
equation

• Given a surface and an illumination model, through the illumination
equation the color of its projected pixels on the screen can be
computed

• For local illumination, the Illumination Equation is composed of
different terms, each adding realism to the scene



Ambient light

• In local illuminaton models, ambient
light is used to model the light that
does not come directly from a light
source

– i.e. under the table

• This is the basic colour of an object,
to which the other components will
be added

• Illumination equation:
          I=kaIa
where

– ka: says how much of ambient light is
reflected by the object
(∈ [0,1])

– Ia: Instensity of ambient light, equal
for whole environment

C
op

yr
ig

ht
 M

ar
ko

 M
ei

st
er

,
B

au
ha

us
-U

ni
ve

rs
ity

 W
ei

m
ar



Diffuse reflection: Lambert Law

• Suppose one has a directed light
source (point or sunlight)

• Some materials reflect the light
equally in all directions

– Example: chalk

• Lambert observed that the more the
incident angle to a surface parts from
the surface normal, the darker the
colour of the surface

• He also noticed, that objects show
the same intensity even if the viewer
is moving around

• The reason is that viewers percieve
the same amount of light per angle
on the retina, no matter what their
viewing angle

L θ N

• Reflected light intensity must
therefore be dependent from the
projection of the light vector onto the
normal to the surface



Diffuse reflection: Lambert Law

• Thus, the total reflected light is given by

Idiff,Lam=IPkdcosθ

where
– IP: Intensity of incident light at surface
– kd: diffuse reflection coefficient of the material ∈ [0,1]
–  Θ: angle between normal to surface and direction of incident light

• Or, by using normalized vectors N and L

Idiff,Lam=IPkd(N·L)



Diffuse reflection: Lambert Law

C
op

yr
ig

ht
 M

ar
ko

 M
ei

st
er

,
B

au
ha

us
-U

ni
ve

rs
ity

 W
ei

m
ar



Ambient + Diffuse Illumination

• The two lighting models presented above can be combined

Idiff=Iaka + IPkdcosθ

to obtain an illumination equation that encompasses both
illumination methods presented



Ambient + Diffuse Illumination

C
op

yr
ig

ht
 M

ar
ko

 M
ei

st
er

,
B

au
ha

us
-U

ni
ve

rs
ity

 W
ei

m
ar



Light source attenuation

• In fact, light does not travel
through space keeping its
illuminating power at the same
level.

• Farther objects get less light than
closer ones, because it is
partially absorbed by particles in
the air

• If constant light intensity is used,
then one would get a kind of
illumination which is similar to the
sunlight

• To solve this problem, an
attenuation factor is added to the
illumination equation, decreasing
light intensity with distance from
the light source

• The resulting illumination
equation is

where the attenuation factor
is:
–  

which gives a too hard decay
of light

– or

where the coefficients are
chosen ad hoc

( )LNkIfkII dpattaa !+=

2

1

L
att d
f =

)1,(
1

32
2

1 cdcdcMax
f

LL
att

++
=



Adding colour

• In order to add colour, the computation of the illumination function
is repeated three times, one for each of the colour components
RGB.

• The illumination equation is therefore repeated for each one of the
three components, and colur components are computed
separately

• In general, for a wavelength λ in the visible spectrum, we have
that

( )LNOkIfOkII ddpattdaa !+= """""



Specular highlights

• In real life, most surfaces are
glossy, and not matte
– Think for ex. at an apple

• Gloss is due to the non-plain-
ness at the microscopic level of
surfaces (microfacet theory) , and
do micro reflecting surfaces of
the material

• Since their distribution is
approximately gaussian, then
most mirror like reflected light is
reflected in direction of the
specular reflection, and some is
scattered in other directions

diffuse glossy specular



Specular highlights

• Around the direction of the
viewer, reflection rays are
scattered and generate a
highlight

• Empirically, scattering decay
from the direction of the viewer
can be seen to behave similarly
as the power of the cosinus of
the angle α

N

L θ θ R
Vα

0

1

0° 90°

cos α 

0

1

0° 90°
0

1

0° 90°

cos8 α cos64 α 



Specular light

• Heuristic model proposed by Phong Bui-Tuong
• Add term for specular highlight to equation

where
– ks= specular reflection constant of surface
– (R⋅V)n=cosnα

( ) ( )[ ]nssddpattdaa VROkLNOkIfOkII
ii

!+!+= """"""



Specular highlights

• Applying Phong illumination allows to obtain quite convincing
images

• Note: these illumination models are implemented in hardware
nowadays



Specular highlights

C
op

yr
ig

ht
 M

ar
ko

 M
ei

st
er

,
B

au
ha

us
-U

ni
ve

rs
ity

 W
ei

m
ar



Multiple lights

• Adding multiple light sources to the illumination model in an
environment is simple:
– Just add contributions due to the single lights
– This, of course, doubles the comptations in the case of two lights



Graphics Pipeline: Shading

Pipeline: Application
Supplies geometric data

Rasterization

Clipping

Interpolate:
lighting+texture

Convert triangles 2 pixels

• Shading concerns simulating
the interaction of light with the
objects.

• The interaction is ruled by the
illumination equation, which
describes the resulting colour
of the object.

• In its simplest form, one
illumination value per triangle
is computed

• But how is it computed?
– To know this, we have to

digress a bit…

Convert into triangles

Geometry
Apply transformations

Shading

C
ou

rte
sy

 ©
 b

le
nd

er
.o

rg



Graphics Pipeline: Clipping

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• Clipping “clips” the scene and
eliminates the polygons that
do not need to be displayed

• There are two clippings being
done:

• 3D clipping, eliminating all
polygons
– Farther than the far plane
– Nearer than the near plane

Convert into triangles

Geometry
Apply transformations

Shading

Clipping

C
ou

rte
sy

 ©
 A

ut
od

es
k



Graphics Pipeline: Clipping

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• 2D clipping, eliminating the
polygons and lines I cannot
view in the image window and
would therefore eat up
computing power

Convert into triangles

Geometry
Apply transformations

Shading

Clipping

C
ou

rte
sy

 S
te

ph
en

 C
he

nn
ey

,
U

ni
ve

rs
ity

 o
f W

is
co

un
si

n 
at

 M
ad

is
on



Graphics Pipeline: Triangle Rasterization

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• While nature is continuous,
screens are made of pixels:
– Placed on a square grid
– Integer coordinates

• Convert the triangles into
pixels is a complex operation:
– Find out which pixels have to

be coloured
– At the same time, draw only

triangles which are not
covered by other triangles

Convert into triangles

Geometry
Apply transformations

Shading

Clipping



Graphics Pipeline: Triangle Rasterization

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• First we have to know how to
draw a line to draw the borders

• Line through PI=(xI,yI), PF=(xF,yF):

or, more simply: y=mx+q.
• Let us find the pixels we need to

switch on to draw the line
• Let us start from (0,0), I.e. let us

suppose that Pi=(0,0) and PF=(4,3)
• I need to find the intersections of the

line y=3/4x with the lines x=j between
0 and 4

Convert into triangles

Geometry
Apply transformations

Shading

Clipping

I
IF

IF
I

IF

IF x
xx
yy

yx
xx
yy

y
!

!
!+

!

!
=

x=i

y=j

x0

y



Graphics Pipeline: Line Rasterization

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• Let‘s compute: y=3/4x

 So I draw the pixels obtained
by rounding the intersections
with the vertical straight lines

Convert into triangles

Geometry
Apply transformations

Shading

Clipping

x=i

y=j

x0

y

12/4=34

9/4=2.25 round to 23

6/4=1.50 round to 22

3/4=0.75 round to 11

00

yx



I
IF

IF
I

IF

IF x
xx
yy

yx
xx
yy

y
!

!
!+

!

!
=

Graphics Pipeline: Line Rasterization

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• And for a generic line? y=mx+q

Hey!
Each time I add m!!!

• This is exactly what we do to
draw lines: add m each step till
endpoint is reached

Convert into triangles

Geometry
Apply transformations

Shading

Clipping

x=i

y=j

x0

y

4m+q=m+(3m+q)4

3m+q=m+(2m+q)3

2m+q=m+(m+q)2

m+q1

q0

yx

m q



Graphics Pipeline: Triangle Rasterization

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• And for triangles? How do I
rasterize them?

– First draw borders
– Then fill one scanline at the

time between border points
– For example, from top to

bottom, until triangle is
finished

Convert into triangles

Geometry
Apply transformations

Shading

Clipping



Flat shading

• And which colour do I draw the
polygons with?

• We saw the problem of flat
shading: you saw the faces!

• For each polygon in the mesh,
compute illumination equation

• Render the whole polygon with
the obtained colour

• Results are already good for
giving an idea of the shape

• However, all polygonal facets are
seeable, and this is mostly
unwanted

• We will come back to this later,
and learn the tricks used to avoid
visible facets

C
ou

rte
sy

 S
te

ph
en

 C
he

nn
ey

,
U

ni
ve

rs
ity

 o
f W

is
co

un
si

n 
at

 M
ad

is
on



Gouraud shading

• To avoid this problem, Gouraud
in 1971 proposed a method to
smooth polygonal surface
rendering

• The idea is to
– compute normal vectors at

vertices of each polygon
(average adjacent polygon
normals
N=N1+N2+N3+N4)

– compute illumination at vertices
– linearly interpolate colour values

along the edges of the polygons
– linearly interpolate colour values

between edges to find out
colour at a given point

• Bilinear interpolation

N1
N2

N3
N4

N

I4

I2

I3

I1 I
I' I" I'=tI2+(1-t)I1

I"=tI2+(1-t)I3
I=tI'+(1-t)I"



Gouraud shading

• Gouraud shading gives smooth
surfaces

• Sometimes highlights are missed

C
ou

rte
sy

 S
te

ph
en

 C
he

nn
ey

,
U

ni
ve

rs
ity

 o
f W

is
co

un
si

n 
at

 M
ad

is
on



Phong shading

• Phong proposed an
improvement to Gouraud‘s idea

• Phong interpolates between
normals and not between colour
to find the normal at a point
inside the polygon

• Note that both interpolations
(Phong, Gouraud) have three
components to compute

• Only once known the
interpolation normal at the point,
illumination is computed at each
point

• Much more computationally
intensive than Gouraud

N1
N2

N3
N4

N

N4

N2

N3

N1 N

N'
N"

N'=tN2+(1-t)N1
N"=tN2+(1-t)N3
N=tN'+(1-t)N"



Comparing shading methods

C
ou

rte
sy

 S
te

ph
en

 C
he

nn
ey

,
U

ni
ve

rs
ity

 o
f W

is
co

un
si

n 
at

 M
ad

is
on



Comparing shading methods



Graphics Pipeline: Z-buffering

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• Wait! Some triangles might cover
others: hidden surface removal.

• How do I know which ones to draw?
• Simple: I compute the depth (=z

value) of each pixel I am about to
draw

• At the start, I enter infinite in a buffer
(= table as big as screen) at each
position of the table

• When I am about to write a pixel, I
look the z value of what I am drawing
is smaller of the current value at the
table

Convert into triangles

Geometry
Apply transformations

Shading

Clipping

– If it is, then I write the current
pixel in the image and update the
value of the “parallel” table to the
z value of the pixel

– If not, I leave the table untouched
and do NOT write the pixel of the
triangle



Graphics Pipeline: Z-buffering

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

Convert into triangles

Geometry
Apply transformations

Shading

Clipping

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞z=1

z=5

z=5

5
4 5

3 4 5
2 3 4 5

1 2 3 4 5

z=5

z=5z=1

∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞
∞

5
4 5

3 4 5
2 3 4 5

1 2 3 4 5

∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞
∞

5
4 5

3 4 5
2 3 4 5

1 2 3 4 5

z=0z=9

z=9

9
9 6 3
9

0

∞ ∞ ∞ ∞
∞
∞
∞

5
4 5

3
2 3 4 5

1 2 3 4 5

9
9 3 0

6

6

z=9

z=9

z=0

0: Empty buffer

1: Setup 1st triangle

1: Draw 1st triangle

1: Draw 2nd triangle



Graphics Pipeline: Textures

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• So I compute lighting equation
almost at every pixel to interpolate
it with Phong shading

• This for drawing solid triangles: at
each point, I take basic colours
and compute illumination either
by using Gouraud or Phong to
obtain the colour

• And what if I want more
interesting looking objects?

• I could glue wrapping paper on
them!

• But how? With textures!

Convert into triangles

Geometry
Apply transformations

Shading

Clipping



Textures

• Reality shows much more
richness of surface detail than
the one obtainable through local
illumination: look at the wall!!

• One could model the surface
with detailed geometry

• However, this would increase
greatly the complexity of the
model.

• A better appproach is therefore
to „paint“ detail on simple
geometry

• The image, called texture, is
„glued“ to a simple geometry to
obtain detail

• First approaches due to Catmull
(74) and Blinn & Newell (76)



Textures

• There are basically two ways of
texture mapping:

– 2D
– 3D

• Let us look first at 2D textures
• Image data (surface pixel colors) is

stored in a 2D image, the pixels of
which are called texels

• Let’s assume the coordinates of the
image are called u,v and that u and v
vary in the interval [0,1]

• To compute what colour is reflected
by the sphere, one must find a
correspondence between sphere and
the texture space

• Parametric sphere: 
x=xc+R cosψsinϑ
y=yc+R sinψsinϑ
z=zc+Rcosπ

• ϑ= (z-zc)/R  longitude
ψ=artan((y-yc)/(x-xc)) +latitude

• u= ψ /2π 
v=(π-ϑ)/π                               to texture

• Similarly, for other
simple maps

– Cube
– Cylinder
– Plane



Textures

• There are deifferent ways of
applying textures for
complicated objects:
– Surround object to be

textured with a simple
object: cube, sphere, cilinder

– Choose a center for the
object

– Texture the cube (invisibly)
– When one draws pixel of the

object, project this pixel to
the cube, and pick the cube
texture color



Textures

• And what if my object is in mesh
form?

• Determine texture coordinate for
each vertex of the mesh (by
projection as before)

• Bilinear interpolation between
vertices
– For triangles, use baricentric

coordinates
(same as done for normals)

• If texture coordinates are beyond
the image, then texture is
repeated, mirrored, clamped or
bordered



Bump maps

• Textures help with the color of
the pixels to be drawn

• However, the resulting objects
still look flat

• To improve this, one can store in
a texture (bump map) normal
variations, and use it for lighting
computations while rendering

• This achieves a bumpy surface,
because the varying normals
change the shading
computations

• However, when bump mapped
polygons are seen from a flat
angle they show their flatness

surface bump map
+

bumped surface



N
P

P’

Displacement maps

• Bump maps do not modify
geometry height, which does not
look good from the profile

• A way to correct this is to
interpret an additional black and
white texture as displacement
offsets along the normal

• This is called a displacement
map

• Since the displacement map
“modifies” the surface to add
detail to it, usual lighting
computations can be done in the
result

Surface + displacement



Environment maps

• There are many ways to use
textures to obtain special effects
in a picture

• Environment maps are used to
simulate reflections on objects

• In this case, the world is
surrounded by a closed surface
having a texture

• The colour at the pixel to be
rendered is looked up on the
texture according to the
reflection ray



Environment maps

• There are two different ways
of surrounding the world with
a surface

• With a sphere: spherical
maps

• With a cube: cube maps



Shadow maps

• Through textures I can also do
shadows

• In this case, you set perspective1 at
the light source, and image1 contains
z-buffer values of the scene from the
light source

• When rendering the scene, at each
pixel one is rendering one looks if its
distance from the light source is
smaller or bigger than the z-buffer
from the light source

• In case it is bigger, then this point is
in the shadow of something else



Multi-pass rendering

• To achieve more complex
rendering effects, different
texture rendering passes are
rendered to a texture and not
displayed

• This allows the layering of
different effects, by blending the
results of different rendering
passes

• This is called multi-pass
rendering



Graphics Pipeline: Wrap up

Pipeline: Application
Supplies geometric data

Rasterization

Interpolate:
lighting+texture

Convert triangles 2 pixels

• What we can do:
– Represent a fine variety of

objects with detailed and rich
surfaces

– Represent convincing
illumination of objects

– “fake” reflections and
shadows

• What we have presented here,
is state of the art gaming
technology

Convert into triangles

Geometry
Apply transformations

Shading

Clipping

• What we cannot do well:
– Reflection
– Refraction
– Surface colour bleeding



+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End


