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RSA Vulnerabilities with Small Prime Difference

Marián Kühnel1

IT Security Group, RWTH Aachen, Germany

kuehnel@umic.rwth-aachen.de

Abstract. The security of the RSA cryptosystem is based on the as-
sumption that recovering the private key from a public pair and factor-
ing a modulus is a hard task. However, if the private key is smaller then
some bound the system is considered to be insecure. An RSA modulus
with small prime difference also significantly reduces the overall secu-
rity. We show that the bound on small private key with respect to small
prime difference can be further improved. Therefore, we adapt the tech-
nique of unravelled linearization for constructing lattices and although
the adapted unravelled linearization is only a method for generating lat-
tices in more elegant way, we yield a benefit compared to known bounds.

1 Introduction

The RSA cryptosystem is currently one of the most widely deployed asymmetric
cryptosystems. From a mathematical point of view we generally try to break
the RSA cryptosystem either by factorizing the modulus N or by exploiting
dependencies in modular equations. In 1990, Wiener [5] demonstrated how one
can reveal the private key from public pair if the original private key is smaller
than N

1
4 . Wiener also mentioned that his attack may sometimes work for pri-

vate keys larger than N
1
4 . This led to an intensive investigation of the modular

equation used by private key generation. Boneh and Durfee improved Wiener’s
result and presented two approaches based on lattices which can find private
keys smaller than N0.292 in polynomial time [1]. These attacks were further
extended by de Weger in case the modulus is a product of primes with small
difference [6]. De Weger derived bounds for both variants where the upper bound
for an extended Boneh-Durfee attack was not analyzed in general due to com-
plicated restrictions in forming an adequate lattice. However, Herrman and May
[3] introduced the technique of unravelled linearization1 which performs a more
suitable linearization on the modular equation and so exploits induced relations
of the linearization itself. These relations are afterward used for the generation
of a lattice. Although their technique did not exceed the bound given by Boneh
and Durfee, they provide a new elegant solution to create an appropriate lattice
without any complicated restrictions.

1 originally introduced for exploiting output bits in power generators[2]
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2 Short Preliminaries on Lattices

A lattice L is a set of all integer linear combinations of linearly independent
vectors u1, u2 . . . , uw ∈ Zn with w ≤ n. One can also describe a lattice by its
basis matrix B consisting of all the vectors u1, u2 . . . , uw as row vectors. The
dimension of a lattice dim(L) = w. If w = n, then the lattice is full rank and
the absolute value of the determinant of a lattice basis matrix is equal to the
determinant of a lattice. Since lattices obtained from unravelled linearization are
always full rank and in addition triangular, the determinant is the product of
the elements on the diagonal.

3 The Small Inverse Problem

Recall the RSA and the modulus N which is a product of two primes p and
q. Then we denote the prime difference of p and q by ∆ = |p − q|. We can
rewrite the small prime difference to ∆ = Nβ for β = [ 14 ,

1
2 ]. In [6], de Weger

pointed out that smaller β significantly improves the results of Wiener [5] and
Boneh and Durfee [1]. Hence, in order to observe dependences between small
prime difference and small private key, we define the private key in terms of N ,
concretely Nδ for δ ∈ [0, 1].

Lemma 1 Let p and q are two primes of a modulus N and Nβ = ∆ = |p− q|.
Then p+ q ≈ N2β− 1

2 .

Proof: We sketch a proof similar to de Weger [6]. We have ∆2 = (p+ q)2 − 4N
= (p+ q − 2

√
N)(p+ q + 2

√
N). We know that 2

√
N < p+ q < 3√

2

√
N . Hence

p+ q − 2
√
N = ∆2

p+q+2
√
N
< ∆2

4
√
N

, p+ q + 2
√
N = ∆2

p+q−2
√
N
> ∆2

4
√
N

.

Therefore p+ q ≈ ∆2

4
√
N
± 2
√
N ≈ N2β− 1

2 . ut
Now we rewrite the common RSA modular equation into its equivalence and

substitute terms N + 1 for A and −(p+ q) for y.

ed = 1 (mod φ(N))
ed = 1 + xφ(N)

ed = 1 + x(N + 1− (p+ q))
0 = 1 + x(A+ y) (mod e).

If modulus N has the same order of magnitude as public key e (i.g. e ≈
Nα, α ≈ 1) then we can solve the small inverse problem for a given polynomial
f(x, y) = 1 + x(A+ y) (mod e) satisfying

f(x0, y0) ≡ 0 (mod e) where |x0| < Nδ and|y0| < N2/beta− 1
2 .

The idea of solving the small inverse problem is to generate a set of coprime
polynomials to the input polynomial f(x, y) which contains the same roots over
integers and then use basis reduction and root finding techniques to reveal exact
roots.
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4 The adapted unravelled linearization with Small Prime
Difference

The underlying polynomial f(x, y) = 1 + x(A + y) (mod e) is the one used by
Boneh and Durfee to generate a basis matrix. They also identified a sublattice
L

′
which provides an improved bound on δ. However, for extracting the sublat-

tice L
′

they introduced complicated geometrically progressive matrices [1] with
a non triangular basis structure. The only approach which effectively reveals the
sublattice L

′
and also keeps triangular structure needed for trivial determinant

calculation is the unravelled linearization method. In this approach, Herrman
and May [3] joined together the monomials of an underlaying bivariate polyno-
mial

1 + xy︸ ︷︷ ︸
u

+Ax mod e

and obtained a linear polynomial f̄(u, x) = u + Ax (mod e) and additionally a
relation xy = u− 1. Then in order to find small roots they fixed integers m and
t, t ≤ m and constructed lattice from underlying polynomial f̄(u, x) = u + Ax
using polynomials

ḡi,k := xif̄kem−k for k = 0, . . . ,m and i = 0, . . . ,m− k
h̄j,k := yj f̄kem−k for j = 1, . . . , t and k =

⌊
m
t

⌋
j, . . . ,m

It is an important fact that τ = t
m ≤ 1. Otherwise, we would obtain a

non triangular basis matrix with properties equivalent to de Weger’s approach.
Another crucial observation is that each generated row polynomial introduces
only one new monomial and all other terms in each row are known from previous
polynomials or can be substituted by the term u− 1 obtained from the original
linearization where we substituted u = xy+1. Therefore, the lattice is generated
by a lower triangular basis matrix. An example of an basis matrix generated for
parameters m = 2 and t = 2 from ḡi,k and h̄j,k is shown in Figure 1. The values
X, Y and U denotes upper bounds of the solution for respective variable.

We mentioned that the basis matrix in unravelled linearization approach
has always triangular basis matrix and hence entries on the diagonal indicate
the determinant. Steps needed for derivating distinct contributions of the upper
bounds to the determinant are explained in [3]. We give here only their results
where the sx denotes the contribution of the upper bound X to the determinant.

sx =

m∑
k=0

m−k∑
i=0

=
1

6
m3 + o(m3)

sy =

τm∑
j=1

m∑
k= 1

τ
j

=
τ2

6
m3 + o(m3)

3



1 x u x2 ux u2 uy u2y u2y2



e2 e2

xe2 e2xX
f̄e eAxX euU
x2e2 e2x2X2

xf̄e eAx2X2 euUxX
f̄2 A2x2X2 2AuUxX u2U2

yf̄e −eA eAuU uUyY
yf̄2 −A2xX −2AuU A2uUxX 2Au2U2 u2U2yY
y2f̄2 A2 −2A2uU A2u2U2 −2AuUyY 2Au2U2yY u2U2y2Y 2

Fig. 1. A lattice using unravelled linearization with parameters m = 2 and t = 2.

su =

m∑
k=0

m−k∑
i=0

k +

τm∑
j=1

m∑
k= 1

τ
j

k =

(
1

6
+
τ

3

)
m3 + o(m3)

se =

m∑
k=0

m−k∑
i=0

(m− k) +

τm∑
j=1

m∑
k= 1

τ
j

(m− k) =

(
1

3
+
τ

6

)
m3 + o(m3)

dim(L) =

m∑
k=0

m−k∑
i=0

1 +

τm∑
j=1

m∑
k= 1

τ
j

1 =

(
1

2
+
τ

2

)
m2 + o(m2)

Recall that our goal is to examine the impact of unravelled linearization on
small difference of primes p and q. Therefore, we replace the parameters given
in [3] for X = Nδ, Y = N2β− 1

2 and U = Nδ+2β−2. This leads to a more general
determinant2

det(L) = XsxY syUsuese ≤ em·dim(L)

Nδsx+(2β− 1
2 )sy+(δ+2β− 1

2 )su+se ≤ Ndim(L)m

Nm3( δ6+(2β− 1
2 )
τ2

6 +(δ+2β− 1
2 )(

1
6+

τ
3 )+

1
3+

τ
6−

1
2−

τ
2 ) ≤ 0

The left side is minimal for τ = 3−2δ−4β
4β−1 . Plugging the optimized τ back to

the equation leads to δ = 1 −
√

2β − 1
2 which is asymptotically equal to the

bound de Weger [6] achieved by expoiting complicated geometrically progressive
matrices [1]. Unfortunately, these geometrically progressive matrices are strictly
defined only for δ ≤ 0.5 [6]. Our unravelled linearization solution has also one
restriction (τ ≤ 1) which is satisfied for values δ ≤ 0.5 and after reaching the
point δ = 0.5 we are “stopped” due to the inability to derive an adequate τ .
However, if we continue with δ > 0.5 for constant τ = 1 and omit that the
method won’t be optimized any more, then we can obtain a benefit. The exact
impact on boundary function is shown in Figure 2. The shaded area depicts
concrete advantage compared to the (improved) Boneh-Durfee attack and de
Weger’s result and the green bold line shows the current boundary function on
δ.
2 for more information on determinant calculation we refer to [3]
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Fig. 2. Improved bound with respect to small prime difference.
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Mars Attacks! Revisited!

Differentially Attack 12 Rounds of the MARS Core and Defeating the
Complex MARS Key-Schedule

Michael Gorski, Thomas Knapke, Eik List, Stefan Lucks, and Jakob Wenzel

Bauhaus-University Weimar, Germany
{Michael.Gorski, Thomas.Knapke, Eik.List,

Stefan.Lucks, Jakob.Wenzel}@uni-weimar.de

Introduction The block cipher MARS has been designed by a team from IBM and became one of
the five finalists for the AES. A unique feature is the usage of two entirely different round function
types. The ”wrapper rounds” are unkeyed, while the key schedule for the ”core rounds” is a slow and
complex one, much more demanding then, e.g., the key schedule for the AES. Each core round em-
ploys a 62-bit round key. The best attack published so far [KKS00] was applicable to 11 core rounds,
and succeeded in recovering some 163 round key bits. But neither did it deal with inverting the key
schedule, nor did it provide any other means to recover the remaining 519 round key bits in usage.

Our attack applies to 12 core rounds, needs 2252 operations, 265 chosen plaintexts and 269 memory
cells. After recovering a limited number of cipher key bits, we deal with the inverse key-schedule to
recover the original encryption key. This allows the attacker to easily generate all the round keys in
the full.

Recent research provides some amazing advances in the cryptanalysis of the AES, mostly for the
192-bit key and the 256-bit key variants, such as the boomerang attacks on the full-round AES-192
(12 rounds) and AES-256 (14 rounds) [BK09] and the ”practical complexity attack” on AES-256 with
up to 13 rounds [BK10]. Since many of these attacks are based on exploiting the AES key-schedule,
which is fairly simple, we are interested in having a fresh look at other block ciphers, namely at those
with a more complex key-schedule. This makes the AES finalist MARS [BCD+99] a highly relevant
subject to study.

MARS consists of a “cryptographic core” in the middle and a “wrapper” surrounding the core. The
”wrapper” is unkeyed, except for two key additions just before the first and after the last wrapper
round. Because of its unusual structure MARS differs from the other finalists.

Our Contribution In [KKS00], Kelsey, Kohno and Schneier published an 11-round attack against
the MARS core, five forward and six backwards. In contrast to this attack, our attack covers 12 rounds
of the MARS core, eight forward and four backwards. The difference results from adding one forward
round (Round 3 of our distinguisher) to our attack. Furthermore, we place the two last rounds of
the attack in [KKS00] at the beginning of our distinguisher. So we can get more information about
the subkeys generated in the first iteration of the key expansion, which are closely linked with the
encryption key. Moreover, it allows us to start a meet-in-the-middle attack on the MARS key scheduler.
In [KKS00] they can recover a total of 163 subkey bits, but they do not consider a way to attack the
key scheduler with this information. So they cannot recover bits from the encryption key.

Differential Cryptanalysis It is one of the most powerful cryptanalysis techniques applied to sym-
metric-key block ciphers. and was first presented by Biham and Shamir [BS90] at CRYPTO ’90 to
attack DES.
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Differential cryptanalysis is a chosen plaintext attack that exploits the high probability of certain
occurrences of plaintext differences and differences into the last or first round of the cipher. A particular
output difference ∆Y occurs with a probability p given a particular input difference ∆X, which goes
through some non-linear parts of the cipher (see the full paper for more description details)

Description of MARS MARS is a block cipher with a block length of 128 bits and a variable key
length from 128 to 448 bits, in increments of 32 bits. The cipher uses 8× 32-bit S-boxes in the Mixing
Rounds and 9× 32-bit S-boxes in the Core Rounds.

The structure consists of sixteen rounds of keyed transformation that build the “cryptographic core”.
The core is wrapped with unkeyed mixing rounds and additional key whitening. In total, the MARS
structure consists of six different layers, that all operate on 32-bit words. Thus, at the beginning, a
128 bit plaintext block is split into the four words A,B,C,D that are then transformed during the
encryption as follows:

1. Pre-Whitening Layer: To each of the four words A,B,C,D, a different subkey of 32 bits length
is added modulo 232.

2. Forward Mixing Layer: Eight rounds of unkeyed mixing, using the S-box, addition and XOR
operations.

3. Forward Core Layer: Eight rounds of keyed Feistel cipher. The core layer combines a variety of
operations, including S-box lookups, multiplications, additions, XORs, fixed-value rotations and
data-dependent rotation.

4. Backward Core Layer: Eight rounds of keyed Feistel cipher. The core layer combines a variety
of operations, including S-box lookups, multiplications, additions, XORs, fixed-value rotations and
data-dependent rotation.

5. Backward Mixing Layer: Eight rounds of unkeyed mixing, using the S-box, subtraction and
xor operations.

6. Post-Whitening Layer: From each of the four words A,B,C,D, a different subkey of 32 bits
length is subtracted modulo 232.

We will focus on the core rounds in the following.

A i−1

K

K*

L

M

R<<< 5

<<< 13

<<< 5

 <<< dd

 <<< dd

XOR

Addition

Multiplication

<<< n

<<< dd

Left rotation by n bits

Data-dependent rotation

9   32-bit S-box

S

S

Fig. 1. The MARS core E-function.
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The “cryptographic core” of the MARS cipher consists of eight forward and eight backward core
rounds. In each round the cipher uses a keyed E-function (E for expansion) which is a combination of
multiplication, data-dependent rotations and an S-box lookup. The structure of the Feistel network
is depicted in Section 4.1 to visualise our distinguisher. The E-function is shown in Figure 1 (see the
full paper for more details).

Differential Attack on 12 Core Rounds of MARS In this section we present the first 12-round
differential attack on the reduced MARS core. The first part describes the distinguisher, which is
partitioned into four parts. The second part of this section describes the attack to recover the subkey
candidates. In the third part we describe the necessary steps to get the secret key. In the fourth part
we show the analysis of the attack.

The Distinguisher The distinguisher itself is partitioned in four parts. The first part consists of the
Round 1 to 3, where we have to guess both keys of the first Round, both keys of the second Round
and the multiplication key of Round 3. Our goal is to reach a difference ∆1 after two round with the
following structure,

∆1 = (0, a, b, 0)

where a and b are arbitrary differences and 0 is a null difference, which means all 32 bits are set to
zero. The second part lasts from Round 4 to 6. Here we use a three-round differential where we choose
the output difference as follows:

∆2 = (0, 0, 0, (?7, 015, ?10))

where a 0 stands for a null bit respectively for a null word and a ? stands for an unknown bit difference.
The reason for our possibility to choose any difference can be found in the description in the full paper.
The third part of our distinguisher lasts from Round 7 to 9. Here we use a three-round differential
with a probability nearly one third induced by the binomial distribution and the non-null part of the
difference will never seen as the input of the E-function within the Rounds 7 to 9. This leads in an
output difference ∆3 after Round 9.

∆3 = ((?6, a, 06, ?19), 0, 0, 0)

The last part of the distinguisher lasts from Round 10 to 12. In Round 12 we want to recover the a
bit and the six following zero bits of the fourth word of ∆5. Additionally we create a table for the last
round to reduce the amount of subkey candidates. The Distinguisher leads us to a total of 186 subkey
bits. For detailed information about the specific differences see the full paper.

The Attack In this section we describe the way to get from the chosen plaintexts to the right subkey
candidates. The attack covers 12 rounds of the MARS core, eight forward and four backwards. For
this attack we use 256 batches with 302 texts each. This results in a total of 265 chosen plaintexts. For
each of the 2154 subkey candidates of the first three rounds we have to do the following steps:

1. Choose 256 arbitrary differences as the output of Round 3 (which is the difference described as
(0, a, b, 0) from Section 1).

2. Partially decrypt the difference (0, a, b, 0) from the output of Round 3 to determine the input
difference (A,B,C,D) of the distinguisher

3. Create 256 batches with 302 texts each where the difference between each of two batches is
(A,B,C,D).

4. Encrypt all plaintexts and store the resulting 265 ciphertexts.
5. Partially decrypt all ciphertexts with each of the 232 subkey candidates for Round 12 and extract

bit a for each ciphertext.
6. Build 256 302-bit strings of the bits a for each batch.
7. Sort the resulting bit strings in order of the chosen plaintexts.
8. Compare the bit strings pairwise to identify the correct subkey candidates.

3
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The Key Recovery Step / Key Expansion The key expansion of MARS expands the secret key of n
32-bit words to a total of 40 subkeys of 32-bit words. The key expansion uses a temporary array T to
hold the internal state of the transformed subkeys. The array T is initialized by

T [0 . . . n− 1] = k[0 . . . n− 1], T [n] = n, T [n+ 1 . . . 14] = 0

where n = 8 (for 256-bit keys) and k is an array with the secret key. The key expansion repeats the
following steps four times, where each iteration produces 10 subkeys:

1. Linear transformation: The array T is transformed by

for i = 0, . . . , 14, T [i] = T [i]⊕ ((T [i− 7 mod 15]⊕ T [i− 2 mod 15]) ≪ 3)⊕ (4i+ j)

2. Four stirring rounds: The array T is stirred using four rounds of type-1 Feistel network

for i = 0, . . . , 14, T [i] = (T [i] + S[low 9 bits of T [i− 1 mod 15]]) ≪ 9

3. Storing keys: The next 10 keys are stored in the array of subkeys K

for i = 0, . . . , 9, K[10j + i] = T [4i mod 15]

where j ∈ {0, . . . , 3}.
4. Modification of multiplication keys: To avoid weak keys, the subkeys that are used for multi-

plications are modified in an additional step where sequences of 10 or more equal bits are modified.
The details of this operation can be found the specification of MARS [BCD+99].

In this section, we are going to mount a meet-in-the-middle attack on the key schedule of MARS. In
the forward step we will guess 210 of 256 bits of the secret key, and additionally 8 bits after the linear
transformation. After the linear transformation we can perform two stirring rounds and know all bits
that go in the S-box in these two rounds. The stirring rounds use additions to transform the words
T [i]. In each word T [i] that is transformed in these rounds, there is a continuous sequence of some
unknown bits that can lead to unpredictable carry bits after the additions of the stirring rounds. For
each of the 23 additions we have to consider in the forward step, we have to execute the forward step
twice.

In the backward step we use four of the subkeys from the result of our distinguisher, K+
4 ,K

∗
5 ,K

+
6

and K∗
9 as known input in the backward step. We invert the modification of multiplication with the

help of a lookup table that stores the projection results all 232 possible values K[i] and all possible
25 rotation values of the patterns. For detailed information about the specific differences see the full
paper. In each stirring round we have to guess the low nine bits from the word T [i−1] that are used as
input to the S-box and modify one word T [i]. In the middle of the MITM attack on the key expansion,
we can compare 27 bits of T [1], 27 bits of T [5], 32 bits of T [6] and 21 bits of T [9]. So we can compare
a total of 107 bits.

Analysis of the Attack For the distinguisher we use 256 batches of 302 texts each and for the difference
after Round 4 (∆2, see Section 1 for further details) we use nine zeroes. The amount of subkey candi-
dates for our distinguisher is 2186. The probability for a right subkey candidate (i.e., a right bit string)
is 2−191, which means we expect one right subkey, and expect only few false positive candidates that
we can test by hand. The probability for a false positive subkey candidate is 2186 · 2−191 = 2−5. The
effort for creating and sorting the table of the last round of the distinguisher is 2165 +165 ·2165 ≈ 2173.
The effort of the distinguisher is 256 · 302 · 2186 · 3.05 = 2251.85. If we consider the additive effort for
the creation of the table for the last Round, the effort is increased to 2251.85 + 2173 ≈ 2252.

4
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The effort of inverting a multiplication key (last part of the key scheduler) can be reduced (in re-
lation to brute force) with the help of a table with all possible input values Ti and the resulting
output values at K∗

j . We found out, that some keys Kj result from the same value Ti. So we tested
all possible values of Ti to find the maximum amount of combinations of rotation values and val-
ues Ti that can generate the same subkey Kj . We found a subkey that could be generated by 102
such combinations. A table lookup may result in 102 outputs, what increases the resulting effort by 27.

The key recovery step is divided in two parts, the forward step and the backward step. This step
includes the initialization, the linear transformation and two stirring rounds. The effort for the forward
round is 2210 ·28 ·223 = 2241. The backward step of this meet-in-the-middle attack includes the inverting
of the multiplication key creation and two stirring rounds. The total effort for the backward step is
214 · 227 · 227 + 237 ≈ 268. In this attack we compare 107 bits in the middle of the four stirring rounds.
Thus, the probability of finding two matching bit strings is 2−107. If we combine the efforts of the
forward step and the backward step we expect to find 2241 · 268 · 2−107 = 2202 possible candidates for
the 210 bits of the secret key with an total effort of 2202. After Step 2 we got 210 bit of the encryption
key with an effort of 2202. This allow us to obtain the rest of the secret key via brute force, which
means the total effort for Step 3 is 2202 · 246 = 2248. This is much faster than obtaining the whole
secret key via brute force.

Conclusion In this paper we describe a differential attack on 12 core rounds of the AES candidate
cipher MARS based on an attack on 11 rounds of the MARS core that was proposed by [KKS00]. We
show that the original attack did not allow the attacker to retrieve information about the encryption
key from the gathered subkey material. Our attack improves the original attack, as it covers one
additional core round and retrieves subkey information that can be used to recover the encryption
key. For this purpose we propose a meet-in-the-middle attack that allows us to invert the key expansion
of MARS more efficiently than exhaustive search.
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1 Introduction

Homomorphic encryption schemes support computation on encrypted data. Such schemes are
of particular interest for various applications, such as Outsourcing of Computation [14], Elec-
tronic Voting [2, 6, 8, 9], Private Information Retrieval [26], Oblivious Polynomial Evaluation
[29], or Multiparty Computation [7].

The most prominent homomorphic encryption schemes, e.g., ElGamal [13], Paillier [32],
Damg̊ard-Jurik [12], are homomorphic with respect to a single algebraic operation. That
is, the plaintext space forms a group (G, ◦) and, given encryptions of m,m′

∈ G, one can
efficiently and securely compute an encryption of m ◦ m′ without revealing m and m′. We
will call such schemes group homomorphic encryption schemes. Although fully homomorphic
schemes [5, 15, 16, 37, 39], i.e., schemes that allow one to evaluate any circuit over encrypted
data without being able to decrypt, provide a much higher flexibility compared to group
homomorphic schemes, the investigation of the latter still represents an important research
topic:

1. The majority of existing homomorphic schemes are group homomorphic and there are
still many open questions regarding these schemes.

2. For practical applications there is currently no alternative to such schemes.3

3. Many constructions of schemes that support more than a single algebraic operation are
in particular group homomorphic as well (e.g., [1, 4]).

4. A comprehensive understanding of group homomorphic schemes leads to a better under-
standing of schemes that are homomorphic in a more general sense, since the underlying
structures are very similar. (This is what we focus on in the talk!)

Over the last decades, a variety of different approaches (and according hardness assumptions
and proofs of security) has been investigated for constructing group homomorphic schemes,
such as the Quadratic Residuosity Problem [19], the Higher Residuosity Problem [2], the
Decisional Diffie-Hellman Problem [13, 34], and the Decisional Composite Residuosity Class
Problem [32, 12]. All these schemes have been investigated separately, resulting in the fact that
some of them are better understood than others. In particular, much effort has been devoted to
proving existing homomorphic schemes IND-CCA1 secure (being the highest possible security
level for a homomorphic scheme). For example, since the introduction of Damg̊ard’s ElGamal
[11] in 1991, many works addressed the problem of characterizing its IND-CCA1 security [18,

3 For example, the most efficient implementation [17] of [16] states that the largest variant (for which a
security level similar to RSA-1024 is assumed) has a public key of 2.4 GB size and requires about 30
minutes to complete certain operations.
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40]. Similarly, while the IND-CPA security of ElGamal is known for a while [38], the quest
for a characterization of its IND-CCA1 security has been in the focus for many years. Only in
2010, the quest concerning these two schemes has finally found an end due to [28]. Finding
similar characterizations for remaining homomorphic schemes, e.g., Paillier’s scheme, is still
an open problem.

2 Contribution and Content of the Talk

In the first part of the talk, we briefly present a unified view both in terms of security
and design on group homomorphic encryption schemes among which the most prominent
encryption schemes such as ElGamal and Paillier can be found. On the one hand, this helps
to access the kind of challenges mentioned above more easily (and in fact, to answer open
questions) and on the other hand provides a systematic procedure for designing new schemes
based on given problems. More precisely, we construct an abstract scheme that represents all
group homomorphic encryption schemes and prove its IND-CCA1 security equivalent to the
hardness of a new abstract problem, called the Splitting Oracle-Assisted Subgroup Member-

ship Problem (SOAP), meaning that every scheme occurs as an instantiation of the abstract
scheme being IND-CCA1 secure if and only if the according instantiation of SOAP is hard.
A characterization of IND-CPA security through an abstract problem, called the Subgroup

Membership Problem (SMP) is an immediate byproduct of our results.

As a direct implementation, we can apply our abstract security characterizations to ex-
isting homomorphic schemes by looking at the according instantiations, to deal with the
IND-CCA1 (resp. IND-CPA) security of these schemes, or to verify existing IND-CCA1 (resp.
IND-CPA) security proofs.

Furthermore, our characterizations allow us to derive impossibility results. For instance,
we show that there cannot exist an IND-CPA secure group homomorphic encryption scheme
when the ciphertexts form a linear subspace of Fn for some prime field F, and the output dis-
tribution of the encryption algorithm is computationally indistinguishable from the uniform
distribution. This partly answers an open question whether using linear codes as ciphertext
spaces yield more efficient constructions (see [16]).

Another utilization of our results is a systematic approach for constructing provably secure
group homomorphic schemes. By using our abstract scheme and a concrete instantiation of
SOAP resp. SMP, one can directly specify a homomorphic scheme that is IND-CCA1 resp.
IND-CPA secure if and only if the respective problem is hard.

As a first example, we consider the k-linear problem [23, 36] which is an alternative to
DDH in groups where DDH is easy, e.g., in bilinear groups [24]. Since its introduction, it
is a challenge to construct cryptographic protocols whose security is based on the k-linear
problem (e.g., [3, 20, 23, 25, 27, 30, 36]). Following this task, we present the first homomorphic
scheme that is based on the k-linear problem for k > 2 (k = 1 is ElGamal [13], k = 2 is Linear
Encryption [3]). In addition, we introduce a new k-problem (an instantiation of SOAP) that
we prove to be hard in the generic group model and to have the same progressive property
as the k-linear problem. This result might be of independent interest as it can be used to
construct new cryptographic protocols with unique features. For instance, we give the first
homomorphic scheme that can be instantiated with groups where DDH is easy (e.g., bilinear
groups) and is nevertheless provably secure in terms of IND-CCA1 due to the new k-problem.
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The second example is motivated by the main result of [22] stating that one can efficiently
construct IND-CCA2 secure encryption schemes from any IND-CPA secure homomorphic en-
cryption scheme whose ciphertext group is cyclic. The existence of such schemes was an open
question. We positively answer this question by constructing such a scheme and prove it
secure under a known problem introduced in [31].

In the second part of the talk, we demonstrate the impact of our results to schemes
that are homomorphic in a more general sense (such as fully homomorphic schemes), we first
identify a certain structure that all existing homomorphic schemes have in common. In fact,
this structure is the key ingredient to our IND-CPA characterization of group homomorphic
schemes and allows us to extend our results to more general cases such as fully homomorphic
schemes. All currently known fully homomorphic schemes arise by applying a technique that
was introduced by Gentry [16] to an underlying (so-called bootstrappable) scheme. Interest-
ingly enough, we also show that the IND-CPA security of such fully homomorphic schemes
is equivalent to the 1-way KDM security of the underlying scheme (which roughly means
that the scheme remains secure even if the adversary gets to see the bits of the secret key
encrypted under the corresponding public key).

In the talk, we give a brief overview on Gentry’s technique, show how our results extend to
this setting, and explain what consequences this has to existing fully homomorphic schemes.

3 Separation from Other Related Work

Aside from the related work that we have already mentioned in the previous sections, there
is a substantial number of papers on the construction of IND-CPA (respectively, IND-CCA1,
IND-CCA2) secure encryption schemes. In this regard, we would particularly like to mention
the work by Cramer and Shoup [10] who give a generic construction of IND-CPA (respectively,
IND-CCA1, IND-CCA2) secure encryption schemes through smooth (respectively, 1-universal,
2-universal) hash proof systems. Furthermore, Peikert and Waters [33] introduce the notion
of Lossy Trapdoor Functions (LTFs) and give a generic construction of IND-CCA1 secure en-
cryption schemes from such functions, while Hemenway and Ostrovsky [21] give a generic con-
struction of IND-CCA1 secure group homomorphic encryption schemes through homomorphic
hash proof systems, which are known to be constructable, e.g., from the Quadratic Residuos-
ity Problem, the Decisional Diffie-Hellman Problem or the Decisional Composite Residuosity
Problem. A somewhat different approach to the construction of IND-CCA1 secure group ho-
momorphic encryption was presented by Prabhakaran and Rosulek [35]. Therein, they build
group homomorphic encryption schemes that are secure in an even stronger sense than just
being IND-CCA1, namely “homomorphic-CCA” secure.

All these works have in common that they build IND-CCA1 secure schemes from non-
interactive assumptions, while we show the IND-CCA1 security equivalent to the hardness of
SOAP which then naturally has to be an interactive problem, as IND-CCA1 is. Therefore, we
stress that we give characterizations of the security of group homomorphic schemes. For all the
above mentioned schemes this means that the underlying non-interactive assumption either
implies SOAP, or is equivalent to it. In the former case, breaking the underlying assumption
would not necessarily break the security of the scheme in question as it is actually equivalent to
SOAP which might still be a hard problem. We do not give a generic construction of IND-CCA1

13



secure group homomorphic schemes from non-interactive assumptions. Concerning IND-CPA

security on the other hand, this is a completely different story, as we propose the first generic
scheme that encompasses all group homomorphic encryption schemes and hence is a also a
generic way to construct IND-CPA secure group homomorphic schemes from non-interactive
assumptions. The latter is due to the fact that the corresponding SMP instance is always
non-interactive.
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ON THE ROLE OF EXPANDER GRAPHS IN KEY

PREDISTRIBUTION SCHEMES FOR WIRELESS SENSOR

NETWORKS - EXTENDED ABSTRACT

MICHELLE KENDALL, KEITH MARTIN

Abstract. The topic of key predistribution schemes for wireless sensor net-

works has been widely studied from a variety of perspectives. In particular,

key predistribution schemes have been proposed based on expander graph the-

ory, and it has been claimed that good expansion properties are necessary for
optimal networks. We examine the role of expander graphs in wireless sen-

sor networks, demonstrate flaws in previous suggestions about product graph

expansion and optimality, show that the success of many schemes is related

to their good expansion properties, and explain the extent to which expander

graphs can be said to provide optimal solutions.

In the context of key predistribution schemes (KPS) for wireless sensor networks
(WSN), the topic of expander graphs was introduced in 2006 from two different
angles. Camtepe et al [2] showed that an expander graph construction could be
used as a template for KPS, and Ghosh [5] made claims linking the necessity of good
expansion to ‘optimal’ WSN solutions. We show that Ghosh’s claims are flawed
but explain the reason why expansion properties are beneficial for WSNs. We then
study precisely where these expansion properties are needed and where they can
be controlled in order to get close to an optimally secured and functioning WSN.

We begin by introducing the relevant terminology and concepts in section 1.
In section 2 we outline Ghosh’s claim and show by means of a counter-example
that his conclusion is misdirected towards expansion in product graphs rather than
intersection graphs. We consider in section 3 how to maximise the probability of a
high expansion parameter in the intersection graph, and conclude in section 4 with
comments on the relationship between expansion and optimality in WSNs.

1. Background

1.1. KPS. We consider the deployment of large numbers of small sensor devices
or ‘nodes’ with the aim of creating a network for the communication of data. This
should be secured by cryptographic keys stored on the nodes before deployment,
or predistributed. Since the nodes are resource-constrained, the aim is to minimise
key storage whilst maximising the connectivity and resilience of the network.

Resilience is a measure of the network’s ability to withstand damage as an adver-
sary compromises nodes, learning the keys which they store. We measure it by the
parameter fails, which is the probability that a random link between two uncom-
promised nodes is rendered insecure because the adversary knows the appropriate
keys after compromising a set of s nodes elsewhere in the network.

To illustrate the trade-offs required, we consider some trivial examples of KPS.
If each node were preloaded with a single key k, then this would require minimal
memory and ensure that any pair of nodes could communicate securely. However,

1
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there would be minimal resilience against an adversary, as fails = 1 for all 1 ≤ s < n,
where n is the total number of nodes in the network.

Another trivial approach is to pick a unique key for each pair of nodes. This has
maximal resilience against an adversary as fails = 0 for all 0 ≤ s < n. However,
each node would have to store n− 1 keys, which is infeasible in large networks.

To find efficient trade-offs between these conflicting parameters, a variety of KPS
have been proposed, a survey of which can be found in [1].

1.2. Graph theory. We now introduce the relevant graph-theoretic definitions. A
graph G = (V,E) is a set of vertices V and a set of edges E. We draw a graph of a
WSN by representing the nodes as vertices and communciation channels as edges.
We say that a graph is connected if there is a path (a sequence of edges) between
every pair of nodes, and complete if there is an edge between every pair of nodes.
The degree of a node is its number of edges.

To be precise in our analysis, we consider the separate component graphs of a
network: the communication graph G = (V,EG) where (u, v) ∈ EG if u and v are
in communication range, and the key graph H = (V,EH) where (u, v) ∈ EH if u
and v share a common key.

Notice that in the trivial KPS examples given in section 1.1 both key graphs are
complete but the resilience is very different. The value of fails is not directly related
to the connectivity of the key graph, but instead to the number of keys known to
each node as a proportion of the total number of keys used in the network.

Two nodes u and v can communicate securely if (u, v) ∈ EG∩EH , that is if they
share an edge in the intersection graph G ∩H = (V,EG∩H). If nodes do not share
an edge in the intersection graph then there are usually ways for them to route
messages through intermediary nodes and/or establish new keys, but this requires
extra communicational overheads and so it is desirable to minimise the diameter,
the longest path length between nodes.

Finally, we introduce another way of combining two graphs. The (Cartesian)
product graph is defined as G.H = (V × V,EG.H), where edges obey the rule:
(uv, u′v′) ∈ EG.H if (u = u′ or (u, u′) ∈ EG) AND (v = v′ or (v, v′) ∈ EH).

We will now define expander graphs and consider why their properties are desir-
able in WSNs.

1.3. Expander graphs. The expansion of a graph is a measure of the strength of
its connectivity. For a thorough survey of expander graphs and their applications,
see [6]. The edge-expansion parameter ǫ for a graph G = (V,E) is defined by

ǫ = min
S⊂V :|S|≤

|V |
2

(

|E(S, S)|

|S|

)

where |E(S, S)| denotes the number of edges from the set S to S, vertices not in S.
If ǫ = 0, this implies that there exists a subset S ⊂ V without any edges

connecting it to the rest of the graph, and we conclude that the graph is not
connected. Conversely, if the graph is connected then ǫ > 0, hence all connected
graphs are ǫ-expander graphs for some positive value of ǫ.

If ǫ is ‘small’, for example ǫ = 1
100

, then there exists a set of vertices S which
is only connected to the rest of the graph by one edge per 100 nodes in S. This
is undesirable for a WSN as it makes the set S vulnerable to being ‘cut off’ from
the rest of the network by a small number of attacks or faults and increases the
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3

communication burden on a small set of nodes, quickly draining their batteries.
If ǫ is larger, particularly if ǫ > 1, then there is no easy way to disconnect large
sets of nodes and communicational burdens are more evenly spread. It also ensures
that the graph has low diameter, logarithmic in the size of the network, and mul-
tiple short paths between nodes, which is beneficial for schemes like the multipath
reinforcement of Chan et al. [3].

Observe that in a finite connected graph G = (V,E), the value of ǫ is bounded:

0 ≤ ǫ ≤ min
v∈V

dG(v) , (1)

where the upper bound is the smallest degree of any vertex in the graph.

2. Expansion in product graphs

We will now examine Ghosh’s claim about expander graphs and WSNs. In his
paper ‘On optimality of key predistribution schemes for distributed sensor net-
works’, Ghosh claims that in order to optimise the conflicting parameters of large
network size, low key storage per node, high connectivity and high resilience, the
product graph must have ‘good expansion properties’ [5]. However, we show by an
example that expansion in the product graph is not a helpful measure and that the
product graph is unable to capture the required detail to analyse a WSN.

Figure 1 shows a communication graph and a key graph, and their corresponding
intersection and product graphs. The product graph is represented in Figure 1(d) in
a way which demonstrates its construction, and redrawn in Figure 1(e) for clarity.
The communication and key graphs are identical, giving the best possible case for
intersection, and the product graph has expansion parameter ǫ = 5

4
.

a b

c d

(a) Communication graph

a b

c d

(b) Key graph

a b

c d

(c) Intersection graph
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(d) Cartesian product graph
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(e) Cartesian product graph re-drawn

Figure 1. The intersection of the component graphs retains all 3 edges
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(a) Communication graph
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(b) Key graph
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c d

(c) Intersection graph
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(d) Cartesian product graph
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cc
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da
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dc

dd

(e) Cartesian product graph re-drawn

Figure 2. The intersection of the component graphs has no edges

On the other hand, a different communication graph in Figure 2 results in the
intersection graph having no edges (meaning that no secure communication is pos-
sible) but the product graph again has expansion parameter ǫ = 5

4
. Indeed, we

can see that the product graphs of Figures 1 and 2 are isomorphic, using a simple
bijection to relabel vertices as follows:

Fig. 1(e) Fig 2(e)
(a∗) → (c∗)
(b∗) → (d∗)
(c∗) → (b∗)
(d∗) → (a∗)

This means that all properties of connectivity, expansion, degree, maximum path
length etc. are identical between the two product graphs. We see that it is the
intersection graph where good expansion is desirable, and that the product graph
is not able to capture the details of the intersection properties of its component
graphs.

3. Expansion in intersection graphs

We now consider the expansion properties of intersection graphs, beginning by
analysing the degrees of individual nodes. It is easy to see that the degree of a node
in the intersection graph G ∩ H cannot be larger than its degree in either of the
underlying graphs. Indeed, for all v ∈ V , dG∩H(v) ≤ min{dG(v), dH(v)}. Together
with the inequality (1), this shows that

ǫG∩H ≤ min
v∈V

{dG∩H(v)} and ǫG∩H ≤ min{ǫG, ǫH} .
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Therefore it is necessary that G and H have high expansion parameters for G ∩H

to be a good expander. If the communication graph is complete then the expansion
of the key graph will be preserved in the intersection. However, we usually assume
that we have little or no control over the communication graph and model it as
random, in which case all that can be done is to make sure that the key graph has
as high expansion as possible for given levels of key storage and resilience.

Camtepe et al. [2] and Shafiei et al. [7] propose KPS based on expander graph
constructions and demonstrate that these schemes compare well to other well-
regarded KPS approaches. Indeed, the success of other KPS approaches is due
at least in part to the fact that they also produce key graphs with good expansion
parameters for chosen levels of key storage and resilience. For example, a funda-
mental reason for the success of Eschenauer and Gligor’s random KPS [4] is that
random graphs are good expanders with high probability [6].

4. Concluding remarks

We conclude with some comments on optimality, since the aim of Ghosh’s paper
[5] is to optimise the conflicting parameters in WSNs. The word ‘optimal’ should be
used with caution when describing a trade-off of many parameters, since priorities
between these parameters will vary in different scenarios. However, we have shown
that if we fix levels of low key storage, large network size and high resilience, then
the larger the value of ǫ in the intersection graph, the better connected it will be,
with lower diameter and fewer weak points.

This shows that in a setting where there is control over the communication graph,
the expansion of the intersection graph should be an important consideration in the
design of the key graph. If there is no control over the communication graph, a
choice of key graph with maximal expansion is likely to be the best possible for
given levels of key storage and resilience, as it will maximise the probability of
achieving high expansion in the intersection graph.
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Abstract. This paper yields an information-theoretic and a computational complexity analysis of the
security of a generic model of randomized stream ciphers. The analytical expression of the secret key
equivocation given the output of the cipher under the chosen plaintext attacking scenario is derived and
analyzed. Regarding the computational complexity security evaluation, it is pointed out that the secret
key recovery is as hard as decoding of a random linear block code and that the indistinguishability is as
hard as certain LPN problem.

Keywords: symmetric cryptography, encryption, homophonic coding, error-correction coding, randomized
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1 Introduction

Randomized symmetric key encryption as an alternative encryption paradigm is considered in [13].
According to [13], the randomized encryption is a procedure which enciphers a message by randomly
choosing a ciphertext from a set of ciphertexts corresponding to the message under the current en-
cryption key, and the following is claimed, [13]: ”At the cost of increasing the required bandwidth,
randomized encryption procedures may achieve greater cryptographic security than their deterministic
counterparts ...”. In [3], a pseudorandom number generator based on the Learning from Parity with
Noise (LPN) problem (related to the hardness of decoding a random linear code) has been reported.
Informally, the LPN problem can be considered as the problem of solving a system of linear equations
corrupted by noise. or a problem of decoding a linear block code. Recently a number of randomized
symmetric key encryption techniques has been reported [6], [10], [11] [1] and [12]. In [6], a probabilistic
private-key encryption scheme named LPN-C whose security can be reduced to the hardness of the
LPN problem has been proposed and considered. In [1] a symmetric encryption scheme similar to
the one reported in [6] is reported and its security and implementation complexity are analyzed. The
symmetric encryption schemes reported in [6] and [1] appears as interesting and stimulating for further
considerations (having in mind improvements as well) particularly because the security is related to
the recognized hard (LPN) problem. Following the encryption approaches recently reported in [10]
- [12], this paper considers and analyzes from security point of view a generic model of randomized
stream ciphers.
Summary of the Results.
This paper yields an analysis of security of a model of randomized stream cipher based on joint
employment of pseudorandomness, randomness and dedicated coding. The considered scheme sequen-
tially encrypts �-bit plaintext vectors into n-bit, n > �, ciphertext vectors employing: (i) a keystream
generator seeded by k-bit secret key, (ii) m − �, � < m < n, balanced random bits where ones and
zeros appear with the same probability equal to 1/2, (iii) n biased random bits where ones appear
with the probability p < 1/2, and (iv) two linear encoding schemes for dedicated homophonic-like and
error correction encoding. The security analysis has been performed assuming the chosen plaintext
attack. The information-theoretic security evaluation was focussed towards the posterior uncertainty
on the secret key. The equivocation of the secret key has been derived and analyzed. The equivocation

21



expression shows that it can be kept to a nonzero value assuming appropriate selection of the encryp-
tion parameters m − �, n and p, when the sample available for cryptanalysis is limited. The previous
imply that the scheme has potential of providing residual uncertainty on the secret key under certain
conditions. Particularly, it is shown that the equivocation is a monotony increasing function of the
parameter p and that it achieves its maximal value equal to k when p = 1/2 (which is not a surprising
outcome but it indicates the correctness of the entire analysis, as well). On the other hand it is shown
that the equivocation is a monotony decreasing function of the parameter n and the sample dimension
τ , and that limes of equivocation when τ(or n) → ∞ tends to 0, implying that, when enough long
sample is available for cryptanalysis, the uncertainty reduces to zero, i.e. the secret key can be correctly
recovered. On the other hand, the previous implies only recoverability of the secret key but does not
tell us how complex the recovery is. Accordingly the considered encryption scheme is analyzed from
computational complexity security point of view, as well. The performed evaluation of the secret key
recovery implies that it is as hard as decoding of a random linear block code after a binary symmetric
channel with the additive noise (cross-over probability) parameter ε equal to 1−(1−2p)(m−�)/2

2 , and also
that the indistinguishability is as hard as the LPN problem with the noise equal to ε.

The analysis performed imply that the considered encryption paradigm provides a framework for
design of provably secure stream ciphers which can provide low implementation complexity as well
(noting that the implementation issues are out of the scope of this paper). Accordingly, the given
analysis provides particular guidelines for design of randomized stream ciphers which fulfil certain
requirements regarding the security and implementation/communications overhead.

2 A Framework of Randomized Stream Cipher

We consider the randomized stream ciphers framework displayed in the following figure.

+

f(k)k

v

z[a||u] G

u

a

Fig. 1. A generic randomized stream cipher encryption.

For algebraic description of the considered encryption, when we consider encryption of a sequence
of vectors at the time instances t = 1, 2, ..., τ , the following notation is employed:
- a(�)

t is a known �-dimensional binary vector at the time instance t;
- f

(t)
t (k) is the keystream generator output segment of length n generated at the time instance t;

- u(m−�)
t is a realization of (m − �)-dimensional binary random variable U(m−�)

t , at the time instance
t, such that Pr(U(m−�)

t = u(m−�)
t ) = 1

2m−� ;

- v(n)
t is a realization of n-dimensional binary random variable V(n)

t at the time instance t such that
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Pr(V(n)
t = v(n)

t ) = pwt(1 − p)n−wt , p < 1/2, and wt = Hwt(v(n)
t ) denotes the Hamming weight of the

vector v(n)
t .

Accordingly, the ciphertext vectors z(n)
t , t = 1, 2, ..., τ , are specified by the following:

z(n)
t = [a(�)

t ||u(m−�)
t ]G ⊕ f

(n)
t (k) ⊕ v(n)

t , t = 1, 2, ..., τ . (1)

The corresponding decryption process is as follows:

a(�)
t = tcat{[ECC−1(z(n)

t ⊕ f
(n)
t (k))]G−1

H } , t = 1, 2, ..., τ , (2)

where tcat{·} is the operator of truncation to the first � bits, ECC−1(·) denotes the decoding operator
of the employed error correction code (ECC) with the generator matrix GECC , and G−1

H is the inverse
matrix of GH assuming that GH · GECC = G. Particulary note that the matrix GH corresponds to
a homophonic encoding approach (see [7] and [9], for example).

3 An Information-Theoretic Analysis of the Security

Preliminaries. When τ = 1 and omitting (for simplicity of the notations) the index t the posterior
probability of the secret key given a sample z(n) can be expressed as follows.

Pr(K = k|Z(n) = z(n)) =
Pr(Z(n) = z(n)|K = k) Pr(K = k)

∑

k Pr(Z(n) = z(n)|K = k) Pr(K = k)
,

and when all the keys are equiprobable

Pr(K = k|Z(n) = z(n)) =
Pr(Z(n) = z(n)|K = k)

∑

k Pr(Z(n) = z(n)|K = k)
,

On the other hand we have the following.

Pr(Z(n) = z(n)|K = k) =
Pr(Z(n) = z(n),K = k)

Pr(K = k)
=

∑

u(m−�) Pr(Z(n) = z(n),K = k,U(m−�) = u(m−�))
Pr(K = k)

=
∑

u(m−�) Pr(Z(n) = z(n)|K = k,U(m−�) = u(m−�)) Pr(K = k,U(m−�) = u(m−�))
Pr(K = k)

=
∑

u(m−�) Pr(Z(n) = z(n)|K = k,U(m−�) = u(m−�)) Pr(U(m−�) = u(m−�)|K = k) Pr(K = k)
Pr(K = k)

=
∑

u(m−�)

Pr(Z(n) = z(n)|K = k,U(m−�) = u(m−�)) Pr(U(m−�) = u(m−�)) .

Further on:

Pr(Z(n) = z(n)|K = k,U(m−�) = u(m−�)) = Pr(V(n) = v(n) = z(n) ⊕ f (n)(k) ⊕ [a(�)||u(m−�)]G)

and accordingly

Pr(Z(n) = z(n)|K = k) =
∑

u(m−�)

Pr(U(m−�) = u(m−�)) Pr(V(n) = v(n) = z(n)⊕f (n)(k)⊕[a(�)||u(m−�)]G)

=
1

2m−�

n
∑

w=0

α(w)pw(1 − p)n−w , , (3)

where α(w) is the number of different vectors u(m−�) which imply the same w = Hwt(z(n) ⊕ f (n)(k)⊕
[a(�)||u(m−�)]G).
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Accordingly, the following statements can be proved (the proofs are omitted because of the extended
abstract length limitation).

Lemma 1. The posterior probability of the secret key assuming the chosen plaintext attack, when
the sample {z(n)

t }τ
t=1 is available, is given by the following:

Pr(K = k|{Z(n)
t = z(n)

t }τ
t=1) =

∑τn
w=0 α∗(w)pw(1 − p)n−w

∑

k

∑τn
w=0 α∗(w)pw(1 − p)n−w

, (4)

where α∗(w) is equal to the number of different combinations of the vectors {u(m−�)
t }τ

t=1 which
for given {z(n)

t }τ
t=1, {a(�)

t }τ
t=1 and k provide that Hwt(||τt=1[z

(n)
t ⊕ f

(n)
t (k) ⊕ [a(�)

t ||u(m−�)
t ]G]) = w,

w ∈ {0, 1, ..., nτ}, ||τt=1[·] denotes the concatenation of τ n-dimensional vectors, Hwt(·) denotes the
Hamming weight of the considered binary vector, and

∑

k(·) denotes summation over all possible keys.

Theorem 1. The equivocation of secret key in the chosen plaintext attack scenario, when the sample
{z(n)

t }τ
t=1 is available, is given by the following:

H(K|{Z(n)
t }τ

t=1) = 2−(|k|+τ(m−�))
∑

z(τn)

(
∑

k

τn
∑

w=0

α∗(w)pw(1 − p)τn−w) · log2

∑

k

τn
∑

w=0

α∗(w)pw(1 − p)τn−w

−2−(|k|+τ(m−�))
∑

z(τn)

∑

k

(
τn
∑

w=0

α∗(w)pw(1 − p)τn−w) · log2(
τn
∑

w=0

α∗(w)pw(1 − p)τn−w) .

where |k| is length of the secret key k, z(τn) = ||τt=1z
(n)
t , α∗(w) ≥ 0 is equal to the number of differ-

ent combinations of the vectors {u(m−�)
t }τ

t=1 which for given {z(n)
t }τ

t=1, {a(�)
t }τ

t=1 and k provide that
Hwt(||τt=1[z

(n)
t ⊕ f

(n)
t (k)⊕ [a(�)

t ||u(m−�)
t ]G]) = w, w ∈ {0, 1, ..., nτ}, ||τt=1[·] denotes the concatenation

of τ n-dimensional vectors, Hwt(·) denotes the Hamming weight of the considered binary vector, and
∑

k(·) denotes summation over all possible keys.

Theorem 2. When p = 0 we have the following:

H(K|{Z(n)
t }τ

t=1) =

⎧

⎪

⎨

⎪

⎩

0 , |k| + τ(m − �) ≤ τn

|k| + τ(m − �) − τn , |k| + τ(m − �) > τn
,

and

H(K|{Z(n)
t }τ

t=1) ≤ min{|k|, τ(m − �)} = min{H(K), H(U(τm−τ�))} ,

where H(K) and H(U(τm−τ�)) denote the entropies of the keys and the employed randomness, respec-
tively.

H(K|{Z(n)
t }τ

t=1) is a monotony increasing function of the parameter p and it reaches its maximal
value equal to |k| when p = 1/2.

Theorem 3. When p < 1/2, H(K|{Z(n)
t }τ

t=1) is a monotony decreasing function of the parameters n
and τ such that:

H(K|{Z(n)
t }τ

t=1) < |k| and lim
τ→∞H(K|{Z(n)

t }τ
t=1) = 0 .
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4 Computational Complexity Analysis of the Security

The following two statements relate the computational complexity based security of the considered
model to the hardness of decoding a random linear block code which is known as NP-hard problem as
shown in [2], and the average hardness of the LPN problem considered in [4], [5] and [8], for example.
(The following Theorems 3 and 4 yield simplified/informal statements because of the space limitation.)

Theorem 4. The complexity of recovering the secret key k in the chosen plaintext attack based on
the algebraic representation of the considered stream cipher is lower bounded by the complexity of
decoding a random linear block code after a binary symmetric channel with the crossover probability
equal to ε = 1−(1−2p)(m−�)/2

2 .

The following statement shows that the problem of distinguishing to which of two possible plaintexts
corresponds the cipherthet generated by the considered stream cipher is as hard as solving certain
LPN problem. More formally, let a1 and a2 be two chosen plaintext known to an attacker, and let one
of them has been randomly selected and encrypted by the considered stream cipher. In the case of the
indistinguishability (IND) security evaluation, the goal is to evaluate the advantage, in comparison
with the random guessing (which provides the success probability equal to 1/2), of an attacker to
determine wether a1 or a2 has been encrypted.

Theorem 5. Let the considered randomized stream cipher employs the keystream generator which is
a linear finite state machine and the cipher parameters are (k, �, m, n, p). Assumption that there is an
adversary A, running in time T , and attacking the cipher in the sense of distinguishing under chosen
plaintext attack with advantage δ by making at most q queries to the encryption oracle implies that
there is an algorithm L such that making O(q) oracle queries and running in time O(T ) can solve
certain LPN problem corresponding to the noise parameter ε = 1−(1−2p)(m−�/2

2 .
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Abstract. The principle of random selection and the principle of adding biased noise are new
paradigms used in several recent papers for constructing lightweight RFID authentication proto-
cols. The cryptographic power of adding biased noise can be characterized by the hardness of the
intensively studied Learning Parity with Noise (LPN) Problem. In analogy to this, we identify a
corresponding learning problem called RandomSelect for random selection and study its complex-
ity. Given L secret linear functions f1, . . . , fL : {0, 1}n −→ {0, 1}a, RandomSelect (L, n, a) denotes
the problem of learning f1, . . . , fL from values (u, fl (u)), where the secret indices l ∈ {1, . . . , L} and
the inputs u ∈ {0, 1}n are randomly chosen by an oracle. We take an algebraic attack approach to
design a nontrivial learning algorithm for this problem, where the running time is dominated by the
time needed to solve full-rank systems of linear equations over O

(
nL

)
unknowns. In addition to the

mathematical findings relating correctness and average running time of the suggested algorithm, we
also provide an experimental assessment of our results.

Keywords: Lightweight Cryptography, Algebraic Attacks, Algorithmic Learning, Foundations and
Complexity Theory

1 Introduction

The very limited computational resources available in technical devices like RFID (radio fre-
quency identification) tags implied an intensive search for lightweight authentication protocols
in recent years. Standard block encryption functions like Triple-DES or AES seem to be not
suited for such protocols largely because the amount of hardware to implement and the energy
consumption to perform these operations is too high (see, e.g., [7] or [13] for more information
on this topic).

This situation initiated two lines of research. The first resulted in proposals for new light-
weight block encryption functions like PRESENT [4], KATAN and KTANTAN [10] by use of
which standard block cipher-based authentication protocols can be made lightweight, too. A
second line, and this line we follow in the paper, is to look for new cryptographic paradigms
which allow for designing new symmetric lightweight authentication protocols. The two main
suggestions discussed so far in the relevant literature are the principle of random selection and
the principle of adding biased noise.

The principle of adding biased noise to the output of a linear basis function underlies the
HB-protocol of Juels and Weis [13] as well as its variants HB+, HB#, and Trusted-HB (see [13],
[11], and [6], respectively). The protocols of the HB-family are provably secure against passive
attacks with respect to the Learning Parity with Noise Conjecture but the problem to design
HB-like protocols which are secure against active adversaries seems to be still unsolved.

The principle of random selection underlies, e.g., the CKK-protocols of Cichoń, Klonowski,
and Kuty lowski [7] as well as the Ff -protocols in [3] and the Linear Protocols in [14]. It can be
described as follows.

Suppose that the verifier Alice and the prover Bob run a challenge-response authentication
protocol which uses a lightweight symmetric encryption operation E : {0, 1}n × K −→ {0, 1}m
of block length n, where K denotes an appropriate key space. Suppose further that E is weak in
the sense that a passive adversary can efficiently compute the secret key K ∈ K from samples
of the form (u,EK(u)). This is obviously the case if E is linear.

Random selection denotes a method for compensating the weakness of E by using the fol-
lowing mode of operation. Instead of holding a single K ∈ K, Alice and Bob share a collection
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K1, . . . ,KL of keys from K as their common secret information, where L > 1 is a small constant.
Upon receiving a challenge u ∈ {0, 1}n from Alice, Bob chooses a random index l ∈ {1, . . . , L}
and outputs the response y = E(u,Kl). The verification of y with respect to u can be efficiently
done by computing E−1Kl

(y) for all l = 1, . . . , L.

The main problem our paper is devoted to is to determine the level of security which can be
reached by applying this principle of random selection.

Note that the protocols introduced in [7], [3], and [14] are based on random selection of
GF (2)-linear functions. The choice of linear basis functions is motivated by the fact that they
can be implemented efficiently in hardware and have desirable pseudo-random properties with
respect to a wide range of important statistical tests.

It is quite obvious that, with respect to passive adversaries, the security of protocols which
use random selection of linear functions can be bounded from above by the complexity of the
following learning problem referred to as RandomSelect (L, n, a): Learn GF (2)-linear functions
f1, . . . , fL : {0, 1}n −→ {0, 1}a from values (u, fl (u)), where the secret indices l ∈ {1, . . . , L}
and the inputs u ∈ {0, 1}n are randomly chosen by an oracle. In order to illustrate this, we will
sketch how an efficient learning algorithm for RandomSelect (L, n, a) can be used for attacking
the linear (n, k, L)+-protocol described by Krause and Stegemann [14].

Consequently, in the full version of this paper, we present an algebraic attack approach for
solving RandomSelect(L, n, a). The running time of our algorithm is dominated by the effort
necessary to solve a full-rank system of linear equations of O(nL) unknowns over the field GF (2a).
Note that trivial approaches for solving the problem RandomSelect (L, n, a) lead to a running
time exponential in n.

In recent years, people from cryptography as well as from complexity and coding theory
devoted much interest to the solution of learning problems around linear structures. Prominent
examples in the context of lightweight cryptography are the works by Goldreich and Levin [12],
Regev [16], and Arora and Ge [2]. But all these results are rather connected to the Learning
Parity with Noise Problem. To the best of our knowledge, there are currently no nontrivial
results with respect to the particular problem of learning randomly selected linear functions,
which is studied in our present paper.

We are strongly convinced that the complexity of RandomSelect also defines a lower bound
on the security achievable by protocols using random selection of linear functions, e.g., the
improved (n, k, L)++-protocol in [14]. Thus, the running time of our algorithm hints at how
the parameters n, k, and L should be chosen in order to achieve an acceptable level of cryp-
tographic security. Note that choosing n = 128 and L = 8 or n = 256 and L = 4, solving
RandomSelect (L, n, a) by means of our algorithm implies solving a system of around 228 un-
knowns, which should be classified as sufficiently difficult in many practical situations.

The full version of this paper is organized as follows. In sections 2, 3, and 4, our learning
algorithm, which conducts an algebraic attack in the spirit of [17], will be described in full detail.
We represent the L linear basis functions as assignments A to a collection X =

(
xli
)
i=1,...,n,l=1,...,L

of variables taking values from the field K = GF (2a). We will then see that each example
(u, fl (u)) induces a degree-L equation of a certain type in the X-variables, which allows for
reducing the learning problem RandomSelect (L, n, a) to the problem of solving a system of
degree-L equations over K. While, in general, the latter problem is known to be NP-hard, we
can show an efficient way to solve this special kind of systems.

One specific problem of our approach is that, due to inherent symmetries of the degree-L
equations, we can never reach a system which has full linear rank with respect to the corre-
sponding monomials. In fact, this is the main difference between our learning algorithm and the
well-known algebraic attack approaches for cryptanalyzing LFSR-based keystream generators
(see, e.g., [15], [8], [9], [1]).

We circumvent this problem by identifying an appropriate set T (n,L) of basis polynomials of
degree at most L which allow to express the degree-L equations as linear equations over T (n,L).
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The choice of T (n,L) will be justified by a fundamental Theorem saying that if |K| ≥ L, then the
system of linear equations over T (n,L) induced by all possible examples has full rank |T (n,L)|.
(Note that according to another Theorem, this is not true if |K| < L.) Our experiments, which
are presented in section 5 of the full paper, indicate that if |K| ≥ L, then with probability close
to one, the number of examples needed to get a full rank system over T (n,L) exceeds |T (n,L)|
only by a small constant factor. This implies that the effort to compute the unique weak solution
t (A) = (t∗ (A))t∗∈T (n,L) corresponding to the strong solution A equals the time needed to solve

a system of |T (n,L)| linear equations over K.
But in contrast to the algebraic attacks in [15], [8], [9], [1], we still have to solve another

nontrivial problem, namely, to compute the strong solution A, which identifies the secret func-
tions f1, . . . , fL, from the unique weak solution. An efficient way to do this will complete our
learning algorithm for RandomSelect (L, n, a) in section 4 of the full paper. Finally, we also
provide an experimental evaluation of our estimates using the computer algebra system Magma
[5] in section 5 and conclude with a discussion of the obtained results as well as an outlook on
potentially fruitful future work in section 6.
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7. J. Cichoń, M. Klonowski, and M. Kuty lowski. Privacy protection for RFID with hidden subset identifiers. In
Proceedings of Pervasive 2008, volume 5013 of LNCS, pages 298–314. Springer, 2008.

8. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Proceedings of Crypto 2003,
volume 2729 of LNCS, pages 176–194. Springer, 2003.

9. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feedback. In Proceedings of
Eurocrypt 2003, volume 2656 of LNCS, pages 345–359. Springer, 2003.

10. C. De Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN – A family of small and effi-
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Abstract: 

In the last decade, various hash functions based on chaotic maps were proposed. Many of the 

proposed algorithms are proved as unsecure or slaw speed hash function algorithms. In this 

paper, we propose a novel parallel chaotic keyed hash functions. The input message is 

partitioned into fixed length of blocks. Hash round function is processed all message blocks 

and generates intermediate hash value. The chaotic map is used to produce the final hash 

value by mixing all rounds intermediate hash values. Hash round functions are implemented 

by one of the chaotic maps and can work in parallel mode to provide high performance and 

security. The proposed hash function has a very simple and flexible design, which produces 

different lengths of keyed hash functions using different chaotic maps. The theoretical 

analyses and computer simulations confirmed that the proposed hash function satisfies the 

requirements of cryptographic hash function with high security and speed. By comparing the 

proposed hash function with several existing hash functions, we conclude the proposed hash 

function provides higher flexibility, better performance, and higher security than many other 

existing hash functions. These properties make it suitable for different applications and 

protocols, such as Secure Socket Layer (SSL), Transport Layer Security (TLS) and e-

commerce applications.  
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Block Ciphers Based on Wavelet Decomposition
of Splines

Alla Levina

This paper presents the new idea which can be applied in the secret-key
cryptosystems. The idea is based on using the theory of wavelet decomposition
of splines.

Proposed paper discusses a new class of algorithms obtained on a theory
of the spline-wavelet decompositions on a nonuniform sets. Theory of wavelet
decomposition of splines has been used before to process discreet signals but
never in cryptography.

Our proposal to create cryptoalgoritms which will use only mathematical
calculation, the algorithm that can processes data blocks up to 2048 bits and
more. These researches were made for splines of the first, second and third degree.
Algorithms based on splines of third degree works slower but they stay stronger
to different cryptoattacks. It also can be made combination of splines of different
degrees in one algorithm.

Theory of wavelet-decomposition of splines for creation of block ciphers can
be applied in different ways.

The presented algorithms do not have XOR operation with the round key and
they do not use S-boxes. Diffusion over multiple rounds we get by mathematical
functions.

As a minuses of this algorithm we can mention what not all the bytes are
getting encipher on each round, some of them just getting moved on several
positions, but not like in Feistel Structure.

Now we will shortly give the idea of wavelet-decomposition of splines.
On the primary set X we will build splines ωi. Set X consists from the

elements {xi}i=0,...,L−1, where {xi}i=0,...,L−1 natural numbers. L is a number of
elements in the set X.

For wavelet decomposition of splines we take out one element xk from our
primary set X and we get new set X.

On the new set X we can build new splines ωj but these new splines can be
represent as a combination of splines which were build before on the set X.

Also splines ωj(t) can be gotten with the help of new splines ωj(t), it helps
us to restore information.

This idea gives us two types of formulas: formulas of decomposition and
formulas of reconstruction. Step by step we take out elements from our primary
set X and build splines which use new set (in this realization each time we take
out just one element and we get new set and new splines, in an other realizations
it we take few elements each time).

If we have information stream ci and we want to get the new stream ci based
on set X we will use formulas of decomposition. Formulas of reconstruction will
help us to restore stream ci, using stream ci.
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2 Alla Levina

A process of enciphering and deciphering consists of K identical rounds.
The number of rounds is denoted by K, IKXγ is a key length, M is a block

length (in the table below M and IKXγ are bytes).
Let IK = (X, γ) be a key ; here X is an ordered set, X = {xj}j=0,...,L−1,

where L is number of elements in the set X and γ is the order of ejection of
elements from the set. The key consist from two sets.

Number of rounds and key length as a function of the block length given in
Table 1, but it can be changed.

K IKXγ

M = 8 bytes 6 15
M = 16 bytes 14 31
M = 24 bytes 22 47
M = 32 bytes 30 63
M = 64 bytes 62 127
M = 128 bytes 126 255
M = 256 bytes 254 511

Table 1.

A sequence C = {ci}i=0,...,M−1 is a plaintext; |C| = M is a quantity of
elements which are ciphered, C is the ordered set.

Elements {ci}i=0,...,M−1 and {xj}j=0,...,L−1 are bytes (we are working with
one-bytes words, but we also can work with 4-bytes words).

Set X and C can be periodic with the period T so xj = xj+T and ci =
ci+T ∀j ∈ ZZ.

Process of enciphering bases on the formulas of decomposition from wavelet
theory, after K rounds we obtain the ciphertext. For deciphering we use formulas
of reconstruction.

Process of enciphering and deciphering consists from two steps, creation of
round key and round transformation.

All calculations goes in finite fields by prime polynomial N, in our realization
we toke polynomial from algorithm Rijndael x8 + x4 + x3 + x + 1.
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Universal hash functions were introduced by Wegman and Carter in
1979, and since then they have been extensively studied. They are used
in diverse cryptographic tasks such as unconditionally secure authenti-
cation, error-correction and privacy amplification (or randomness extrac-
tion). Various constructions of Universal hash function classes by Wegman
and Carter, Stinson, Chaum et al., and den Boer are known. All have
different description lengths and differ in terms of their computational
efficiencies.

This presentation addresses a new construction of Universal hash func-
tions. In particular, a new construction of ε-Almost Strongly Universal (ε-
ASU2) hash functions is presented, using the idea of LFSR-based hashing
by Krawczyk. This new construction is very efficient and requires much
smaller description than the well-known Wegman-Carter construction of
ε-ASU2 hash functions.

Before looking at the new construction, let us recall the definitions of
Universal and ε-ASU2 hash functions and the composition theorem for
Universal hash functions.

Definition 1 (Universal2 hash functions). Let M and T be finite
sets. A class H of hash functions fromM to T is Universal2 if there exist
at most |H|/|T | hash functions h ∈ H such that h(m1) = h(m2) for any
two distinct m1,m2 ∈M.

If there are at most ε|H| hash functions instead, it is called ε-almost
universal2 (ε-AU2).

Definition 2 (ε-ASU2 hash functions). Let M and T be as before. A
class H of hash functions from M to T is ε-ASU2 if the following two
conditions are satisfied:

(a) The number of hash functions in H that takes an arbitrary m1 ∈M
to an arbitrary t1 ∈ T is exactly |H|/|T |.
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2 A. Abidin

(b) The fraction of those functions that also takes an arbitrary m2 6= m1

in M to an arbitrary t2 ∈ T (possibly equal to t1) is at most ε.

If ε = 1/|T |, then H is called SU2.

Theorem 1 (Composition). Let F be a set of ε1-AU2 hash functions
from M → Z, and let H be a set of SU2 hash functions from Z → T .
Then, G = H ◦ F is an ε-ASU2 hash function family from M→ T with
ε = ε1 + 1/|T |.

The construction is as follows: Our aim is to construct an 2/|T |-
ASU2 family with smaller description than the Wegman-Carter construc-
tion, which requires a key of length (log |T |+ log log log |M|)4 log |M| to
describe a hash function in the family, here the log stands for the bi-
nary logarithm. To this end, we use the composition theorem above for
constructing such a hash function family. By composing an LFSR-based
2 log |M|/|Z|-AU2 hash functions from M→ Z with an SU2 hash func-
tions from Z → T , we obtain a 2 log |M|/|Z| + 1/|T |-ASU2 hash func-
tions. To make 2 log |M|/|Z| + 1/|T | = 2/|T |, we let |Z| be equal to
2 log |M||T |. For the LFSR-based construction, the required hash func-
tion description is 2 log |Z| + 1. But for the SU2 hash functions the de-
scription length is roughly 2 log |Z|. Therefore, for this construction of
2/|T |-ASU2 hash functions, the required description length 4 log |Z| +
1 = 5 + 4(log |T | + log log |M|), which is much shorter than (log |T | +
log log log |M|)4 log |M|. For instance, for log |M| = 230 and log |T | = 64,
the above presented construction requires 280 bits of key to achieve 2/264-
ASU2, while the Wegman-Carter approach requires 8268 bits to achieve
12/264-ASU2.

This new construction first uses LFSR, which can be efficiently be
implemented in both hardware and/or software, to map the big number
(the long message) to a much smaller number (the intermediate string).
Then, the intermediate short string is mapped by an SU2 hash function to
a tag. Therefore, this new construction is computationally very efficient.
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Introduction

Increasingly, small computing devices become a part of the pervasive communication infrastructure.
Radio Frequency Identification (RFID) technology is a corner stone of ubiquitous computing. RFID
tags are low cost devices which communicate wirelessly with a reader and are used for the purpose of
identification and tracking. Using RFID technology it is possible, e.g., to identify products in a warehouse
with a unique identification number. Therefore RFID tags are expected to replace bar codes in the future.
This becomes even more likely with the invention of IC-printing (integrated circuit printing) [4] which
makes the production of RFID tags even cheaper.

With the increasing deployment of low cost computing devices there comes also a demand for security
solutions. As we are faced with extremely resource constrained environments w.r.t. power consumption
and area, traditional cryptographic algorithms cannot be employed. Thus, there is a need for specially
tailored encryption algorithms.

At IEEE RFID 2011, David et al. proposed a new cryptographic primitive for use with RFID [2].
The design is a stream cipher called A2U2 and was inspired by the lightweight block cipher KATAN [3].
A2U2 can be implemented using 284GE and has an output rate of 1 bit per cycle.

Shortly after its publication, a chosen-plaintext attack was published on IACR Eprint by Chai
et al. [1], claiming to break the cipher using extremely few computational resources. As it turns out,
however, this attack is not applicable since it works with an erroneous description of the cipher. In this
work, we show why the attack does not work and how it can be repaired.

We then continue by describing attacks for a known-plaintext scenario. Firstly, we propose a
guess-and-determine attack that is faster than exhaustive search, requiring about 249 guesses.

In addition, we analyze the key/IV setup. A special design feature of A2U2 is that the number of
initialization rounds varies from 9 to 126, depending on a part of the key called counter key. We propose
a differential-style attack that enables us to find this counter key. Moreover, we present an attack with
complexity 238 that recovers the master key in the case where only 9 initialization rounds are used. Both
attacks are chosen-IV attacks, i.e. they require the attacker to choose the initialization vector.

The Stream Cipher A2U2

The cipher’s inner state consists of a counter LFSR C (7 bit), two non-linear feedback shift registers
(NFSRs) A and B (17 and 9 bit), and a key register K (56 bit). Thus, the total inner state size is 89 bit.

The two NFSRs are inspired by KATAN [3], where the feedback function of the first register provides
the feedback of the second register and vice versa. Thus, the update of NFSR B depends only on bits of
register A, while the update of register A uses bits of B and a derived value ht. This ht is determined
by five consecutive bits of the master key, the counter LFSR C and one bit from NFSR A and can be
presented as a quadratic polynomial. Afterwards the next five key bits are processed.

In order to generate the ciphertext, the cipher deploys a form for irregular output mechanism; it
outputs either encrypted plaintext bits or pseudo-random bits depending on the content of NFSR cell
At. Plaintext bits have to “wait” until At = 1 before being encrypted. If we denote the plaintext string
by P = (P0, P1, . . .) and if we define σ(t) =

∑t−1
i=0 At with σ(0) = 0, then the output of the cipher in

round t is:
Yt = MUXAt

(Bt + Ct, Bt + Pσ(t)),

where MUXx(y, z) = y if x = 0 and MUXx(y, z) = z otherwise.
The cipher’s 61-bit key is split into two parts: The master and the counter key. The registers A and

B are initialized with 26 bits of the master key xored with part of the IV. The counter LFSR C is
initialized using the 5-bit counter key and the remaining IV bits. The cipher runs for a varying number
of initialization rounds depending on the counter key. It is important to note that the counter register
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contains all ones at the beginning of the encryption process; thus, the counter value is known at any
time during the encryption.

A Chosen-Plaintext Attack

In [1], a very efficient chosen plaintext attack against A2U2 is proposed. However, the attack contains a
flaw that makes it unapplicable against the real A2U2 cipher. The wrong assumption is that the plaintext
bits are used at rate of 1 bit per ciphertext bit. Thus, choosing a plaintext which is the complement
of the counter sequence would allow the attacker to recover the sequence At that determines whether
a plaintext or a counter bit is encrypted. However, it is not possible to choose a plaintext bit for every
round because some plaintext bits are used over several rounds and the attacker does not know in which
rounds a plaintext bit will be used.

Fixing this problem, choosing two plaintexts, namely the all-zero and the all-one plaintext, enables us
to recover first the sequence Bt and then to determine the positions of the ciphertext where a plaintext
bit was used. When we know the sequences At and Bt we can generate a linear equation system in the
key bits and recover the 56 bits of the master key.

To recover Bt we first consider the ciphertext corresponding to the all-zero plaintext. We know that
for all time slots t with Ct = 0 it holds that Ct = Pσ(t) and thus Bt = Yt. We learn about half of the bits
of the sequence B. The remaining bits can be learned by repeating the same exercise with the all-one
plaintext.

We can use this new information to learn the sequence At as well. For every time slot, we pick the
ciphertext bit Yt corresponding to the plaintext bit Pσ(t) 6= Ct. If it holds that Bt = Yt+Ct, then At = 0,
otherwise At = 1.

Guess-and-Determine Attack

This attack is based on the fact that the derived value ht, which is used to update register A, can be
presented as an at most quadratic polynomial in the master key bits. The idea is to determine ht for
sufficiently many time slots t in order to set up and solve an equation system in the key bits.

We guess the sequence At and determine the corresponding value Bt. After 9 guesses, the full register
B is known and we can determine the derived value ht for all further guesses. After 8 additional guesses
we also know the full register A; thus we can determine Bt in the following rounds. The knowledge of Bt
enables us to determine At for time slots t where the counter bit Ct differs from the plaintext bit. This
significantly reduces the complexity of the attack to about 249 guesses.

Targeting the low number of initialization rounds

The number of initialization rounds varies from 9 to 126 and is determined by the counter. We propose
a differential-style chosen-IV attack that identifies cases where only 9 rounds of initialization were used.
For each of the 32 possible counter values we encrypted 1 bit of plaintext under 29 state pairs (a certain
sparse difference is introduced in the NFSRs). Then we can observe a bias in the ciphertext bit for the
29 pairs where only 9 initialization rounds have been used.

When only 9 initialization rounds are applied we can recover 32 master key bits and 6 bits of type
ht with a complexity of 238 using 8 plaintext/ciphertext pairs of length 5 bit. Depending on the counter
value Ct−1 this is done by either guessing derived bits ht or master key bits in each round. The remaining
master key bits can be recovered by brute force.
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Abstract. TWIS is a 128-bit lightweight block cipher that is proposed by Ojha et al. In this work,
we analyze the security of the cipher against differential and impossible differential attacks. For
the differential case, we mount a full-round attack on TWIS and recover 12 bits of the 32-bit final
subkey with 221 complexity. For the other case, we present distinguisher which can be extended
to key recovery attack. Also, we showed that the security of the cipher is only 54 bits instead of
claimed 128 bits. Moreover, we introduce some observations that compromise the security of the
cipher.
Keywords: TWIS, Lightweight Block Cipher, Differential Cryptanalysis, Impossible Differential
Distinguisher.

1 Introduction

TWIS is a 128-bit block cipher designed to be used in ubiquitous devices. The cipher, which is
inspired from CLEFIA[1], is a 2-branch generalized Feistel Network of 10 rounds. There is no
key recovery attack on this cipher up to the authors knowledge. The only analysis is done by
Su et al.[2] in which n-round iterative differential distinguishers are presented. However, as the
probability of the iterative distinguishers are 1, they cannot be extended to a differential attack
to get information about the key.

In this paper, we analyze the security of TWIS block cipher against differential and impossible
differential cryptanalysis. We mount a differential attack on full-round TWIS and recover 12 bits
of the 32-bit final subkey with a complexity of 221. This is the first experimental result on TWIS.
Also, we present a 9.5-round impossible distinguisher which can be extended to a key recovery
attack. Furthermore, by making observations on the key schedule, we show that the cipher offers
at most 54-bit security instead of claimed 128-bit. Besides, we mention the potential weaknesses
due to the use of subkeys during the encryption and the choice of whitening subkeys. The paper
is organized as follows. In Section 2, a 10-round differential attack is presented. Impossible
differential distinguisher is proposed in Section 3. Some observations on the algorithm are given
in Section 4. Finally Section 5 concludes the paper. The detailed description of TWIS can be
found in [3].

2 Differential Attack on TWIS

In this section, we propose a key recovery attack on 10-round TWIS excluding the final key
whitening. Our attack is based on a 9.5-round differential distinguisher which is explained in
the following section.

2.1 9.5-round Differential Characteristic

The inputs of the F -function are the 1st and the 3rd 32-bit words of the data which are inter-
changing in the swap operation. There is no rotation operation applied on the 3rd word and
the rotation on the 1st word is a 1-bit right rotation. Therefore, if we have 80000000x as input
difference in the 3rd word, this difference will produce zero differences after the F -function with
probability 1 during the next four rounds by a property of S-box. We extend such a 4-round
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characteristic by adding 3 rounds to the beginning and 2.5 rounds to the end of it. The best
characteristic that we found for TWIS has probability 2−18 and is given in Table 1. For simplic-
ity, we use the alternative round function given in [2]. In Table 1, the values ∆Ii refer to the
input differences of the corresponding round. The output differences are not given additionally
as they are the input differences of the next round.

Table 1. 9.5-round Differential Characteristic

Rounds ∆I0 ∆I1 ∆I2 ∆I3 # Active S-boxes
I/O Diff.
for S-box

Probability

1 02000000x 00000000x 00000000x 0000A600x 1 0x02 → 0xA6 2−4

2 00000000x 00000000x 01000000x 00000000x 1 0x01 → 0x00 2−5

3 01000000x 00000000x 00000000x 00000000x 1 0x01 → 0x00 1*

4 00000000x 00000000x 00800000x 00000000x 0 - 1

5 00800000x 00000000x 00000000x 00000000x 0 - 1

6 00000000x 00000000x 00400000x 00000000x 0 - 1

7 00400000x 00000000x 00000000x 00000000x 0 - 1

8 00000000x 00000000x 00200000x 00000000x 1 0x20 → 0x83 2−4

9 00200000x 00000000x 80000041x 00000000x 2
0x20 → 0x83
0x01 → 0x00

2−5*

9.5 80000041x 80000041x 00100000x 00000000x 1 0x01 → 0x00 1*

80000041x 00004180x 80100041x C0000020x - -

Notice that, in Table 1, the probability values of some rounds are marked with an asterisk(*)
and these values are also relatively higher when considering the number of active S-boxes. The
reason for high probability is that the cipher uses the same subkey for two consecutive G-
functions and this makes them identical. To clarify, let x and x̄ be two input values to G and
y, ȳ be the two corresponding output values. Then, if x and x̄ are input to the next G-function
which uses the same subkey, the outputs will again be y and ȳ. Hence, if an input pair with
input difference ∆x produces outputs with difference ∆y with some probability p in G, then
the same output difference ∆y is produced with probability 1 when the input difference is ∆x
for the next G-function that uses the same subkey. Therefore, the probability of a differential
characteristic that involves such G-functions is p instead of p2. If each G-function were using
different subkeys, the probability of the characteristic would be 2−32.

2.2 10-round Differential Attack

We perform a key-recovery attack on 10-round TWIS, excluding the final key whitening, by
using the 9.5-round differential characteristic given in Section 2.1 and recover 12 bits of the
last round subkey RK10. Adding a half round to the end of the given 9.5-round differential
characteristic and simply tracing the differences, we obtain the difference between ciphertext
pairs as (80100041x,C00041A0x, ????????x, 00418000x).

The attack proceeds as follows:

1. Take N = c.218 plaintext pairs P i = (P i
0, P

i
1, P

i
2, P

i
3), P i∗ = (P i

0
∗
, P i

1
∗
, P i

2
∗
, P i

3
∗
) such that

P i ⊕ P i∗ = (02000000x, 00000000x, 00000000x, 0000A600x) and obtain their corresponding
ciphertexts Ci = (Ci

0, C
i
1, C

i
2, C

i
3), C

i∗ = (Ci
0
∗
, Ci

1
∗
, Ci

2
∗
, Ci

3
∗
) by encrypting these plaintexts

for 10 rounds of TWIS.

2. Check the first 64-bit and the last 32-bit ciphertext difference whether Ci
0⊕Ci

0
∗

= 80100041x,
Ci
1 ⊕ Ci

1
∗

= C00041A0x and Ci
3 ⊕ Ci

3
∗

= 00418000x and keep the text pairs satisfying these
equations.
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3. As the input differences of the S-boxes in the 10th round are 0x3f ·80 = 0x0, 0x3f ·10 = 0x10,
0x3f · 00 = 0x0 and 0x3f · 41 = 0x01, one can attack the 2nd and 4th 8-bit words of RK10.
However, since two bits of each word vanish after bitwise AND operation, we can retrieve
12 bits of the subkey. Therefore, keep a counter for each possible value of the 12 bits of the
subkey RK10 corresponding to the second and the fourth bytes.

4. Inputs of the last F -function are (Ci
0, RK10) and (Ci

0
∗
, RK10). XOR of output difference of

this F -function and ((00418000x) >>> 8) should be equal to the XOR of 80000041x and
(∆Ci

2 <<< 1). So, for each pair of plaintexts and their corresponding ciphertexts (Ci, Ci∗),
increment the counter for the corresponding value of the subkey RK10 when the following
equations holds:

F (Ci
0, RK10) ⊕ F (Ci

0
∗
, RK10) ⊕ 00004180x = 80000041x ⊕ (∆Ci

2 <<< 1).

5. Adopt the key with the highest counter as the right key.

The number of required plaintext pairs is N = 4 · 218 = 220 and this makes the data com-
plexity of the attack 221 chosen plaintexts. The time complexity of this attack is 221 10-round
encryptions and the memory complexity is 212. Moreover, as the two attacked 6-bit words are
independent from each other, one can keep two counters of 6 bits instead of a single counter of
12 bits, which reduces the memory complexity to 27.

The implementation of the attack verifies the results given in this section. Using the reference
implementation of TWIS and taking c = 4, it takes only 15 seconds on a laptop1 to get the 12
bits of the final subkey. By optimizing the reference code, the attack time can be decreased.

3 Impossible Differential Distinguisher for TWIS

While building the impossible differential characteristic, we were inspired from the differential
characteristic given in Table 1. We combine two differential characteristics with probability
one and obtain a contradiction by using the miss-in-the-middle approach[4]. The impossible
differential characteristic is depicted in Figure 1, in which “0” denotes the 32-bit word consisting
of all zeros.

In the left part of Figure 1, the input difference (0,0,∆y,0), ∆y=00800000x, is proceeded for
4.5 rounds in the forward direction and the difference (∆t,0,0,0), ∆t=00200000x, is obtained. On
the other part, starting from the last round of the characteristic, the output difference (∆t,0,0,0)
is traced backwards for 5 rounds and (0,0,∆x,0) difference where ∆x=01000000x, is acquired.
However, we cannot have (∆t,0,0,0) = (0,0,∆x,0) since both ∆t and ∆x are non-zero differences.
Therefore, (0,0,∆y,0) 9 (∆t,0,0,0) after 9.5 rounds.

This characteristic can be extended to an impossible differential attack by adding half round
to the beginning of the characteristic. By guessing the initial subkeys, wrong values can be
eliminated and one will be left with the actual value of the subkeys.

4 Key Related Observations

This section is devoted to the observations on TWIS block cipher. These observations, which
are mainly on key scheduling algorithm, include very basic design flaws like actual key size and
trivial related key distinguishers that compromise the security of the algorithm.

1 2.2 Ghz Intel Core2Duo Processor, 2 GB Ram, Ubuntu 10.10 64 bit Operating System.
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Fig. 1. Impossible Differential Characteristic where ∆x=01000000x, ∆y=00800000x, ∆t=00200000x, and
∆z=00400000x.
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The most important flaw with the key schedule is that it does not use all bits of the master
key. Instead, it uses only 54 bits of the 128-bit key. The first subkey is generated from the first 3
and the last 29 bits of the master key. Each remaining subkeys will be generated by left rotation
of the modified key by 3. Therefore, key scheduling algorithm uses the first 33 and the last 29
bits of the key to derive the 11 subkeys which adds up 62 bits. Considering the bits eliminated
by the S-Boxes in the key scheduling part, the actual key size of the cipher further reduces to
54 bits.

Another flaw arises from the S-box used in the key schedule. The S-box is used in the same
manner with data processing part, so, one can find many related key distinguishers for TWIS. In
order to form a related key distinguisher, it is enough to use a difference between two keys, where
the difference coincides to the bit positions that are not processed by the S-box. The number
of related key distinguishers can be increased by choosing the key differences that coincide the
first two bit positions of 8-bit S-box input.

Also, in the data processing part, the data is XORed with the subkey and then S-box is
applied to the XORed data. As S-box ignores the first two bits of the 8-bit input, 8 bits of the
key is thrown away after this operation. So, the actual subkeys are 24 bits instead of 32 bits.

The key whitening is used in an inappropriate way. Notice that RK0 is XORed to P0 as the
key whitening which also again XORed to P0 in the first round inside the G-function. In this
way RK0 will be cancelled in G and it has no effect on the first G-function. Therefore, the cipher
can be considered as 9,5 rounds.

Furthermore, the choice of final whitening subkeys results in a weakness. If one can determine
the whole 32-bits of RK2 and RK10 by attacking the final round, he can also determine the
subkeys in between trivially

Besides, the diffusion of the key bits into the plaintext is not sufficient. This is a result of
using an 8-bit word-wise permutation instead of a bitwise permutation and 8-bit S-box. This
enables the attacker to mount an exhaustive search for a 32-bit subkey by dividing it into four
8-bit words without the knowledge of the remaining 24 bits. The complexity of such a search
will be 4 · 28 = 210 instead of 232. However, in TWIS case, since the S-box ignores two input
bits, one can recover the active subkey with 4 · 26 = 28 complexity.

5 Conclusion and Future Work

In this paper, we analyze the security of TWIS block cipher against differential, impossible differ-
ential attacks. Our results show that 10-round TWIS, when we exclude the final key whitening,
is not resistant against differential attack. We recover half of the active key bits with 221 cho-
sen plaintexts. Also, we present distinguishers using the impossible differential technique. This
distinguisher can be extended to key recovery attack. Finally, we propose some important ob-
servations on the algorithm.

As future a work, we aim to apply the mentioned attacks on full TWIS and mount related-key
attacks by using the weaknesses in the key schedule.
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Abstract. CSA (Common Scrambling Algorithm) is used to encrypt
digital audio and video streams in DVB (Digital Video Broadcasting).
This is commonly used to limit access to this content to paying cus-
tomers. In this paper, we present a practical attack (time memory trade-
off) against CSA, that can be used to recover the ciphers key and decrypt
the protected content. The attack is feasible against many currently de-
ployed systems. We also discuss countermeasures that would defeat this
attack without customer interaction.

1 Introduction CSA

CSA (Common Scrambling Algorithm) is the symmetric cipher used to protect
content (mostly video data) in MPEG2 Transport Streams3 in DVB (Digital
Video Broadcasting). As part of the MPEG-TS standard, it is virtually used for
all Conditional Access Systems in digital television.

1.1 Brief Description of the CSA Structure

A MPEG Transport Stream (TS) is a stream of 188 byte cells (4 byte header
and 184 byte payload). Additional Header information can optionally be stored
in the payload, using an Adaptation Field. In the following we will only look at
cells that do not have additional header information. The payload can optionally
be encrypted using one of two keys with DVB-CSA. One key is usually used to
actually encrypt the payload while the other key is updated using a smart card or
a similar system. Two ”Scrambling Control” bits in the header indicate whether
the cell was encrypted with the even(10) or the odd(11) key or whether it is
unencrypted(00).

DVB-CSA encrypts in 2 steps. The first step splits the plain text in blocks
of 64 bit length and encrypts them with a custom block cipher in CBC mode
using reverse block order and an all zero initialization vector. In the second step,
a custom stream cipher is used to encrypt all blocks except the first one, which
is used as initialization vector. Note that CSA is completely deterministic and
that this construction guarantees that every bit of the output depends on every
bit of the input. Stream and block cipher share the same 64bit key.

3 ISO 13818-1
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1.2 Key Length

In spite of the fact that CSA works with 64 bit keys, we observed that only 48
bit of entropy are used for many TV stations. The fourth and the eigth byte of
the key in this case are the sum of the previous three bytes:

k0 k1 k2 k0 + k1 + k2 k4 k5 k6 k4 + k5 + k6

This reduces the effort needed for an exhaustive search from 264 to 248 trial
decryptions.

This fact was not mentioned in previous academic publications [2–4] but is
actually documented on the Wikipedia (as of 2006)4. Because CSA is a non
public standard that has been reverse engineered, we do not know whether these
checksums are part of the specification or originate from cryptography export
restriction.

Since 248 trial decryptions are clearly possible for small corporations and
even individuals, CSA poses more likely a hindrance than a perfect protection of
the payload. Most TV stations change the CSA key every 7 to 10 seconds using
a smart card base key distribution system instead of using one (then manually
entered) key over a longer period of time.

2 Rainbow Tables

Rainbow tables originally introduced by Oechslin [1] are a time-memory tradeoff
that can be applied to find preimages for any given one-way function. A rainbow
table used to compute preimages for f(x) consists of the beginning and end of
chains of the form:

k0
R0◦f−→ k1

R1◦f−→ k2 · · · kt−3
Rt−3◦f−→ kt−2

Rt−2◦f−→ kt−1

Ri is a compression function family that takes a output of f and gives us an
element of the domain in which we are looking for preimages of f .

i 6= j ⇒ Ri(x) 6= Rj(x)

Now given an output k the attacker tries every position in this chain from 0 to
t − 1 and computes the end of the chain from there until he finds a chain that
has the same end as the one he just computed. The attacker now computes this
chain from the beginning to the point of the preimage he is searching. Rainbow
tables have lots of parameters that can be changed to meet restrictions imposed
by the speed at which one can compute the one-way function f(x) or the storage
used.

4 http://en.wikipedia.org/w/index.php?title=Common Scrambling
Algorithm&diff=41583343&oldid=22087243
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2.1 Known Plain text In MPEG2 Video Data

In H.262 (ISO 13818-2), the video compression codec used in DVB-S, so-called
stuffing bytes are used to ensure a minimum bit rate. The ISO 13818-2 standard
allows only zero bytes to be inserted between elements of the bit stream[5]. Since
DVB-CSA is completely deterministic, encrypted all-zero MPEG-TS (Transport
Stream) cells are detectable as collisions in the cipher text if two all-zero frames
occur within the lifetime of a key. All-zero cells are mostly observed when a series
of frames with no or only small differences is encoded. For example, a teleshop-
ping show showing a static image of a product will generate lots of all-zero cells.
A good counter-example would be a video recorded with an old film camera
containing a lot of scratches or other artifacts. Some programs always contain
a sufficient number of all-zero cells so that known plaintext can be recovered.
We did not observe any other constant plaintext cells producing collisions in the
transport stream.

As a one-way function upon which a rainbow table could be built, we propose
a mapping f that takes an 48-bit key (without the two checksum bytes) as input
and returns the first 6 ciphertext bytes of an all zero cell encrypted with this key.
Note that in order to compute f , only 23 calls of the block cipher are required.
As reduction function Ri one could simply xor the input of f with i.

3 High Speed Implementations of CSA

For the creation of the rainbow table, a fast implementations of the CSA block
cipher would be helpful. We implemented the block cipher using the SSE2 in-
struction set of recent x86 CPUs. Also we have implementations using with
CUDA and OpenCL that make use of the computational capacity of modern
graphic accelerators.

3.1 Performance Data

A comparison of different implementations of CSA. By cell in this context we
mean one evaluation of the one-way function.

Hardware Implementation cells/sec
GeForce GTX 460 OpenCL 3922848
GeForce GTX 460 CUDA 3391555

Intel Core i5 2.53 GHz SSE 557103
AMD Phenom(tm) II X4 965 3.4 GHz SSE 552486
AMD Phenom(tm) II X4 965 3.4 GHz libdvbcsa 246913

Intel Core i5 2.53 GHz libdvbcsa 217864

4 Rainbow Parameters

These high-speed implementations could be used to generate rainbow tables for
various attack scenarios. Assuming that a hard-disk is able to perform 100 ran-
dom accesses per second, and an adversary can encrypt about 4,000,000 cells on
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a GPU and about 500,000 cells on a single core CPU, we generated 3 parameter
sets.

An adversary might be interested in recovering a DVB-CSA transmission in
real-time. He needs to recover a single DVB-CSA key in less than 7 seconds.
Using a GPU, the precomputations require 4 hard-disks and 7.9 TB of storage.
Such a table can be precomputed on a single graphics card in less than 13 years.
Using multiple graphics cards or faster graphics cards reduces the required time.

Alternatively, an adversary might not be interested in decoding a transmis-
sion in real time, or he would like to recover a static key from a station, that only
changes the key manually. If a key should be recovered within 30 minutes, this
can be done with 120GB of precomputations on a graphics card (less than 8 years
of precomputations on a single graphics card) or 525GB of precomputations on
a CPU (less than 5 years of precomputations on a graphics card).

Scenario # Tables # Chains Chain-length Coverage Storage
GPU 7sec per key 2 238.488 2000 96.837% 7.9TB
GPU 30min per key 3 232 68410 91.953% 120GB
SSE 30min per key 18 231.542 10000 85.722% 525GB

5 Countermeasures

Even though the probably most secure solution to prevent this attack on CSA
would be replacing it with a rather modern system; However, minor changes
that would not required exchanging hardware in virtually every household in
the western hemisphere, can also prevent this attack. For a start, using the
64 instead of 48 independent bits for a key would render time memory tradeoffs
inefficient in comparison to the practice of Card Sharing 5. Also, removing known
plain text (sequences of 0-bytes longer that 183 bytes) in the video data would
strike a devastating blow to the attack suggested here. The solution we think is
best would be to send all zero filled cells selectively unencrypted while still using
encryption for all other cells.

While the above is true for Conditional Access Systems (the biggest users of
CSA) there is also the notion of more sensitive data being secured using CSA.
With keeping in mind that 264 trial decryptions required for exhaustive search
of the key are still in reach of well funded organizations one might not want to
rely on CSA if it comes to the transport of highly sensitive data via satellite.

6 Conclusion

This paper shows, that DVB-CSA can be broken in real time, using standard
PC hardware, if precomputed tables are available. These precomputations can
be performed on a standard PC in years. This makes DVB-CSA useless for
any application, where real confidentiality is required. DVB-CSA might still be

5 Somebody pays for access to the key material (usually a smart card of sorts) and
then distributes the session keys via the Internet
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used to protect digital content, where an adversary is not interested in attacks
on the system, that recovers less than 99.9% of the payload. The attack can be
prevented with small changes, what must be applied to the DVB-CSA encryption
equipment, without having to alter the receivers side. We would like to thank
everybody, who contributed to this paper.
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Abstract. In this paper we present a survey on critical attacks in code-based cryp-
tography. In particular, we consider three cryptosystems – McEliece, Niederreiter,
and HyMES – and analyze their vulnerability against a number of these attacks. All
cryptosystems show a weakness against several attacks. We conclude with a discussion
of techniques to protect against critical attacks.

Keywords: Code-based cryptography, critical attacks.

1 Introduction

In 1994, P. Shor [12] showed that quantum computers can break most “classical” cryptosys-
tems, e.g. those based on the integer factorization problem or on the discrete logarithm
problem. It is, therefore, crucial to develop cryptosystems that are resistant to quantum
computer attacks. Cryptography based on error-correcting codes is a very promising can-
didate for post-quantum cryptography since code-based cryptographic schemes are usually
fast and do not require special hardware, specifically no cryptographic co-processor.
Error-correcting codes have been applied in cryptography for at least three decades, ever
since R. J. McEliece published his paper in 1978 [8]. The McEliece scheme is as old as
RSA and has resisted cryptanalysis to date (except for a parameter adjustment). His work
has received much attention as it is a promising candidate for post-quantum cryptography.
Two other schemes that have recieved attention are the Niederreiter cryptosystem [11], and
HyMES (Hybrid McEliece cryptosystem), developed by N. Sendrier and B. Biswas [3], which
combines ideas from both schemes in order to increase the efficiency.
These cryptosystems are based on the syndrome decoding (SD) problem (or the general
decoding problem, which can be reduced to it), which has been proved NP-complete [2].
There are generic attacks against these cryptosystems, e.g. based on information set decod-
ing or the generalized birthday algorithm, buth these can be rendered infeasible by choosing
appropriate parameters.
In practical applications, however, an attacker might not have to break the SD problem in
order to decrypt a message. These critical attacks are possible usually when the attacker has
some additional capability (e.g. a decryption oracle) or additional information (e.g. partial
information about the plaintext).

Our contribution In this paper, we provide a survey of critical attacks against the three
cryptosystems above and discuss techniques to protect against them.

Related work In [6], Kobara and Imai discuss some critical attacks (a subset of our list)
against the McEliece cryptosystem and propose a conversion that protects against these
attacks.
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Organization of the paper Section 2 describes the three code-based cryptosystems. In
Section 3 we present the different critical attacks and their application to the cryptosystems
above. Section 4 concludes the paper.

2 Code-based encryption schemes

In this paper, a (n, k, t) code denotes a linear code of length n and dimension k capable of
correcting t errors. If t is not relevant, we write (n, k) code for short. The (Hamming) weight
of a vector v is denoted wt(v) and refers to the number of non-zero entries.

2.1 McEliece

The McEliece public-key encryption scheme was presented by R. McEliece in 1978 [8]. The
original scheme uses binary Goppa codes, for which it remains unbroken (with suitable
parameters), but the scheme can be used with any class of codes for which an effcient
decoding algorithm is known.

Let G be a k × n generator matrix for a (n, k, t) Goppa code, P an n × n random
permutation matrix, S a k × k invertible matrix and DG a decoding algorithm for the code
generated by G. All matrices and vectors are defined over a finite field Fq.
The private key is (S,G, P,DG), while Ĝ = SGP and t are made public.

Encryption To encrypt a message m ∈ Fk
q , the sender generates a random vector e ∈ Fn

q

with wt(e) = t and computes the ciphertext c = mĜ+ e.

Decryption Recieving a ciphertext c, the recipient computes ĉ = cP−1 = mSG+eP−1. Since
P is a permutation, wt(eP−1) = wt(e), so DG can be used to decode it: mSG = DG(ĉ).
The recipient then chooses a set J ⊆ {1, . . . , n} such that G·J (the matrix formed by the
columns of G indexed by J) is invertible, and computes m = mSG ·G−1

·J · S−1.

2.2 Niederreiter

In 1986, H. Niederreiter proposed a cryptosystem [11] which can be seen as dual to the
McEliece scheme. It uses the parity check matrix of a (usually Goppa) code to compute
the syndrome of the message, which serves as the ciphertext. Even though the Niederreiter
cryptosystem has been proven equally secure as the McEliece system [7], it is threatened
by different critical attacks.

Let H be a r×n parity check matrix for a (n, k, t) Goppa code, where r = n−k, and DH

a decoding algorithm for the code defined by H. Since the underlying Goppa code can only
correct a certain number t < n of errors, the Niederreiter scheme uses a function ϕ to map
the message to a word of length n and weight t: ϕ : Fl

q 7→ Wn,t, where l = dlogq
(
n
t

)
(q− 1)te

and Wn,t is the set of vectors of length n and weight t.
The private key is DH , and H, t, and ϕ are made public.

Encryption Let m ∈ Fl
q be the message, then the ciphertext c is computed as c = H ·ϕ(m)T .

Decryption Recieving a ciphertext c, the recipient decrypts it as m = ϕ−1(DH(c)).

2

47

PhD
Rechteck



2.3 HyMES

The HyMES Hybrid McEliece cryptosystem developed by N. Sendrier and B. Biswas [3]
increases the effciency of the McEliece scheme by encoding part of the message into the
error vector. While in the usual scenario this scheme is as secure as the original McEliece
scheme, it behaves differently facing critical attacks.

The HyMES scheme works as follows: The message m is split into two parts
m = (m1|m2). The first part m1 corresponds to the message in the original McEliece
scheme, while the second part is encoded into a word of weight t and serves as the error
vector e = ϕ(m2).

Let G, P , S, and DG be defined as for McEliece. Let ϕ be a function like in the Nieder-
reiter scheme.
The private key is (S,G, P,DG), while Ĝ = SGP , t, and ϕ are made public.

Encryption Let m ∈ Fk+l
q be the message, with l as above. Let m1 be the first k bits of m

and m2 the remaining l bits. The ciphertext c is computed as c = m1Ĝ+ ϕ(m2).

Decryption The recipient first recovers m1 as in the McEliece scheme above by computing
ĉ = cP−1 = m1SG + ϕ(m2)P

−1, applying the decoding algorithm mSG = DG(ĉ), and
finding m1 = mSG ·G−1

·J ·S−1 with J as above. The second part of m is found by computing
m2 = ϕ−1(c−m1Ĝ).

3 Critical attacks

3.1 Description

In this section, we give a brief description about the different critical attack we include in
our analysis. The results are summarized in Figure 3.2.

Broadcast The general idea behind a broadcast scenario is that a sender send an identical
message (or very similar messages) to a number of recipients. The message is encrypted with
each recipient’s own public key. A broadcast attack attempts to exploit the knowledge that
the ciphertexts correspond to the same or similar messages in order to reveal the cleartext.
In 1988, J. Håstad [5] presented an attack against public key cryptosystems. This attack
was originally aimed at the RSA cryptosystem, when a single message is sent to different
recipients using their respective public keys. Håstad showed how to recover the message in
this broadcast scenario. While this result is known for a long time, this type of attack has
been considered only recently for cryptosystems based on error-correcting codes.
In [10], Niebuhr et al. presented a broadcast attack on the Niederreiter and HyMES cryp-
tosystems that allowed to recover the cleartext in negligible time (10-20 seconds on a
desktop PC) using only a small number of recipients – 3 for the Niederreiter parameters
(n, k) = (1024, 644).

Known partial plaintext This type of attack applies when an attacker knows part of the
plaintext he attempts to reveal. This scenario arises in many applications, e.g. standardized
emails or electronic forms.
The complexity of decoding the ciphertext decreases exponentially with every known bit.
For example, attacking a ciphertext encrypted with McEliece using parameters (n, k) and
knowing kl bits is equivalent to attacking a McEliece ciphertext encrypted using parameters
(n, k − kl). See [9,4,6] for more details.
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Message-resend and related-message A message-resend condition is given if the same
message is encrypted and sent twice (or several times) to the same recipient. If the subsequent
messages are related to the first by a known relation, it is called a related-message condition.
In the case of McEliece and HyMES, these conditions can be detected by observing the
Hamming weight of the sum of two ciphertexts. By comparing the two ciphertexts, an
attacker can identify those bits where

– with high probability, neither ciphertexts contains an error, or
– with certainty, exactly one contains an error.

This allows to recover the ciphertexts in negligible time [9].

(Adaptively) chosen ciphertext and Lunchtime In a chosen ciphertext attack, an
attacker has access to a decryption oracle that allows to decrypt any chosen ciphertext
(except the one the attacker attempts to reveal). In the general setting, the attacker has
to choose all ciphertexts in advance before querying the oracle. In the adaptive chosen
ciphertext attack, he is able to adapt this selection depending on the interaction with the
oracle. A variant from the adaptive attack is the Lunchtime scenario which is derived from
the idea that an attacker only has a limited time to access the oracle (e.g. while the victim
is at lunch), e.g. the number of queries is limited.

Reaction attack This attack can be considered a weaker version of a chosen ciphertext
attack. Instead of recieving the decrypted ciphertexts from the oracle, the attacker only
observes the reaction of the oracle. Usually, this means whether the oracle was able to
decrypt the ciphertext. In the context of side-channel-attacks, this can also mean observing
decryption time, power consumption etc.
In one of the easiest variants, the attacker flips individual bits of the ciphertext he attempts
to decode, and observes whether the oracle is able to decrypt it. If that is the case, the bit
corresponds to an error bit (McEliece / HyMES). In the Niederreiter case, the same can be
achieved by adding columns of the parity check matrix to the syndrome.

Malleability A cryptosystem is vulnerable to the malleability of it’s ciphertexts if it is
possible for an attacker to create new valid ciphertexts from a given one and if the new
ciphertexts decrypts to a cleartext related to the original message. This property is relevant
in many scenarios, e.g. bank transactions, where an attacker could change the amount of
money transferred.

3.2 Results

The results of our analysis are summarized in Table 3.2.

4 Conclusion

In this paper we have analyzed the vulnerability of the McEliece, Niederreiter, and HyMES
cryptosystems against several critical attacks. All schemes show a weakness against sev-
eral of these attacks, HyMES against all of them. This result emphasizes the importance
of conversions for these cryptosystems that protect against critical attacks. When choos-
ing appropriate conversions, it is important to consider all critical attack above, since some
conversions protect against only some of them; e.g. the well-known Optimal Asymmetric En-
cryption Padding (OAEP) by Bellare and Rogaway [1] is unsuitable for the McEliece/Nieder-
reiter cryptosystems since it does not prevent reaction attacks. A secure conversion for the
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McEliece Niederreiter HyMES

Plaintext

Broadcast [10] no * *
Known partial [9] * * *
Message-resend [9] * no *
Related-message [9] * no *

Ciphertext

Chosen * * *
Lunchtime * * *
Adapt. chosen [13] * * *
Reaction [6] * * *
Malleability [6] * no *

Fig. 1. Critical attacks

McEliece cryptosystem has been proposed in [6], and for the Niederreiter cryptosystem in [6].
These are not applicable to the HyMES cryptosystem; however, the Mceliece conversion con-
tains a similar technique as is used in HyMES, so the resulting scheme contains the efficiency
improvements introduced in HyMES.
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Abstract. Multi-party computation deals with enabling players to jointly compute a func-
tion over their private inputs. In this work we consider players which behave rationally,
i.e. all players want to maximize their own profit. The question is, if there exist functions
where players achieve a Nash-equilibrium if they submit their true input and such enable
all players to compute the correct value of the function. Such functions are called non-
cooperatively computable. In this paper, we analyze whether non-cooperatively computable
Boolean functions exist and we define properties of such functions. In order to define the
pay-off of the players we state the preferences that players which participate in a crypto-
graphic multi-party computation protocol have. We show how many Boolean functions are
non-cooperatively computable if players prefer to compute the correct outcome and sec-
ondly prefer that the other players cannot compute the correct outcome. Furthermore, we
analyze functions that are privacy-preserving, i.e. that do not reveal anything about the
private inputs of the players. We conjecture that there are no Boolean functions that are
privacy-preserving and that are non-cooperatively computable.

1 Introduction

Introduced in [4], non-cooperative computation (NCC) deals with the joint evaluation of a multi-
variate function by rational (i.e. self-interested) players, where each player provides one of the
input values. Players communicate their input to a trusted center, which performs a commonly
known computation and returns the result to the players. We analyze functions that admit NCC.
The question is whether the players can be incented to communicate their inputs correctly to the
center and believe that the value returned by the center is the output of the function on correct
inputs.

In order to answer this question one has to identify preferences that players might have and
their respective orderings. In [2, 3] the following preferences for cryptography are listed:

correctness: the player wants to compute the correct outcome.
exclusivity: as few other players as possible learn the correct outcome.
privacy: the player does not want other players to learn anything about his input.
voyeurism: the player learns as much as possible about the inputs of the other players.

The authors in [4] provide a classification of Boolean functions that are non-cooperative com-
putable provided that the players value correctness first and exclusivity second. They give concrete
examples of Boolean functions that are not non-cooperatively computable, such as the XOR func-
tion.

In this paper we look at Boolean functions that actually are non-cooperatively computable,
provide examples and a thorough analysis for small numbers of players.

The game-theoretic approach has also proven to be useful in the setting of multi-party com-
putation and secret sharing. Typically protocols in these fields are designed under the assumption
that there are good and bad players, where the good ones follow the protocol and the bad ones
do not. Assuming players that instead value correctness over exclusivity, [1] show that multi-
party computations without trusted center and secret sharing is impossible with protocols of fixed
running time.
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2 Boolean players and functions

Let n ≥ 1 be the number of players. Every player Pi has a type Ti drawn from the set B = {0, 1}
according to a probability distribution ∆i. We simply write ti for Ti = ti and assume full support
for ∆i, i.e. ∆i(ti) > 0 for all ti. Combining the types of all players yields the vector t ∈ Bn and
omitting the type of player Pi the vector t−i ∈ Bn−1. The set of Boolean functions in n variables
is denoted by Fn = {F : Bn

→ B}. It has size #Fn = 2(2
n). For any Boolean function F , we have

its complement F described by F (t) = F (t) = F (t)⊕ 1.
We will list several properties of interest and follow up with examples and a discussion of the

respective numbers for small n.

P0 P1 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1. All Boolean functions F : B2
→ B.

Definition 1 (degenerate). Let F ∈ Fn. The player Pi is called relevant, if there exist ti ∈ B

and t−i ∈ Bn−1, such that

F (ti, t−i) 6= F (ti, t−i).

Functions, where some players are not relevant are called degenerate.

Clearly, the function constantt, that returns the constant value t for any input vector, is
always degenerate. In two variables (Table 1), these are F0 and F15.

Definition 2 (conditionally/absolutely dominated). Let F ∈ Fn. A player Pi is called con-
ditionally (or absolutely) dominating, if

1. Pi is relevant and
2. there is some ti ∈ B, such that for all y−i, z−i ∈ Bn−1, we have

F (ti, y−i) = F (ti, z−i)

(and also F (ti, y−i) = F (ti, z−i)).

If such a player exists, we call F conditionally (or absolutely) dominated.

The only absolutely dominated functions are dictatori, which simply return the input of
player Pi, and their complements. In two variables (Table 1), these are F3 and F5, respectively.

Definition 3 (reversible). Let F ∈ Fn. We say, that a player Pi can reverse F , if for every
t−i ∈ Bn−1

F (ti, t−i) = F (ti, t−i).

If such a player exists, we call F reversible.

Clearly, a player who is able to reverse F has to be relevant. The authors of [4] note that the only
symmetric reversible functions are parity, returning the XOR of the inputs, and its complement.
In two variables (Table 1), the parity function is F6 and its complement is F9. Furthermore, a
function is reversible and conditionally dominated if and only if it is dictatori for some i or the
complement.
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Definition 4 (privacy-preserving). Let F ∈ Fn. We say that player Pj can violate the privacy
of player Pi with i 6= j, if there is an input tj ∈ B and values x,y ∈ B, such that

F (tj , t−j) = x ⇒ (ti = y)

for all t−j ∈ Bn−1. If such a pair of players exists, we say that F admits privacy violations and
otherwise that F is privacy-preserving.

Figure 1 puts properties in relation to each other.

dictatori

degenerate

conditionally dominated reversible

NCCcorr>excl

Fig. 1. Properties of Boolean functions.

We remark the following criterion.

Proposition 1. A Boolean function is degenerate/conditionally dominated/reversible/privacy pre-
serving, if and only if its complement is.

We conclude with Table 2, listing the number of Boolean functions satisfying the named criteria.
The number of degenerate Boolean functions is sequence A005530 in the OEIS [5].

conditionally
n #F(n) degenerate non-degenerate dominated reversible

1 4 2 2 2 2

2 2(2
2
) = 16 6 10 8 2

3 2(2
3
) = 256 38 218 118 2

4 2(2
4
) = 65536 942 64594 3512 934

Table 2. The numbers of functions that are degenerate, non-degenerate, conditionally dominated and
reversible for small n.

3 Non-cooperative computations

We consider the non-cooperative computation of a Boolean function for at least 2 rational players.
We assume that all players are relevant to the function, or in other words, that the function is
non-degenerate.

Each player participating in a computation has to make two strategic choices.
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– Which value gi(ti) should he report to the center?
– Which value fi(F (gj(tj)), ti) should be his guess for F (t))?

A simple strategy is to report truthfully, gi(ti) = ti, and to believe the center’s return value,
fi(F (gj(tj)), ti) = F (gj(tj)). This strategy is called straight-forward and a function F is called
non-cooperatively computable if the game is in a Nash-equilibrium when everybody plays the
straight-forward strategy. In other words, no player can achieve a more favorable outcome by
deviating from the straight-forward strategy, assuming that all other players use it. We discuss
two particularly interesting combinations of “favorable outcomes”.

3.1 Correctness first, exclusivity second

The following theorem is due to Shoham and Tennenholtz [4]:

Theorem 1 (NCCcorr>excl). If players value correctness first and exclusivity second then a Boolean
function is non-cooperative computable if it is not reversible and not conditionally dominated.

We emphasize the importance of excluding degenerate functions. Otherwise, the constant functions
would also satisfy the criterion above. We used this theorem to determine whether such functions
exist. We answer this in the affirmative for n = 3 and 4 (Table 3). Note, however we found that
there are no NCCcorr>excl-functions for two players.

3.2 Privacy-preserving functions

In this section we take the work in [4] one step further: While the authors in [4] considered only
the preferences correctness over exclusivity, we consider in this section the additional preference
privacy. At first, we consider the privacy of one particular Pi and we denote the set of functions
that preserves its as

Privi = {F : no Pj , j 6= i, can violate the privacy of Pi}.

Next, we look at the intersection of functions that do not admit any privacy violations, we
denote it as Priv i.e.

Priv =
n
⋂

i=0

Privi.

Taking a closer look at the functions in Privi, it is interesting to see that this set contains
exactly the functions that are degenerate for player Pi, as well as the parity function and its
complement. Therefore, the only functions in the set Priv are the parity function, its complement,
and the constant functions. Note, that constant functions are degenerate for any player.

Table 3 shows how many functions do not admit privacy violations for one particular player
(Privi) or for any player (Priv), respectively for n = 2, 3, 4. Based on our experimental results we
state the following conjecture: There are no privacy preserving functions that are also NCCcorr>excl

in the sense of [4].
Theorem 6 of [2] states that ”If privacy is ranked over correctness, and both are ranked over

exclusivity, then a function is NCC if and only if it is not reversible, non-dominated and has no
privacy violations.” As shown above, no such functions exist for n ≤ 4, since the only functions
that do not admit privacy violations are degenerate and therefore dominated.

4 Outlook

To complete the picture of non-cooperatively computable Boolean functions, we need to care-
fully define and analyze the functions allowing voyeurism. We observed that the four preferences
correctness, exclusivity, privacy and voyeurism suggested for cryptography are fairly generic and
that further refinements may be in place. Non-cooperatively computable Boolean functions are an
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n total NCCcorr>excl

2 10 0
3 218 106
4 64594 61090

n total Privi Priv

2 16 4 2
3 256 18 4
4 65536 18976 4

Table 3. The number of NCCcorr>excl functions in relation to all non-degenerate Boolean functions. The
number of functions that do not admit privacy violations for a particular player Pi or any player, respec-
tively in relation to all Boolean functions.

important first step to identify suitable functions for multi-party computation. If rational players
do not want to comply with the protocols, since the benefit for them is higher if they do not
follow the rules, then even the best cryptographic protocol fur multi-party computation is useless.
Boolean functions are, however, only a small set of functions. It would be interesting to investigate
functions with larger domains and ranges. Furthermore, we assume that the input types of the
players are distributed independently, an interesting case would also be to investigate correlated
inputs. The authors in [2] investigated all orderings among the four preferences. We believe it
is important to investigate all subsets of the four preferences and also to consider that players
participating in the same game might have different preferences.
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Abstract. We present new techniques for deriving preimage resistance bounds for block cipher based double-
block-length, double-call hash functions. We give improved bounds on the preimage security of the three “classical”
double-block-length, double-call, block cipher-based compression functions, these being Abreast-DM, Tandem-
DM and Hirose’s scheme. For Hirose’s scheme, we show that an adversary must make at least22n−5 block cipher
queries to achieve chance 0.5 of inverting a randomly chosen point in the range. For Abreast-DM and Tandem-DM
we show that at least22n−10 queries are necessary. These bounds improve upon the previous best bounds ofΩ(2n)
queries, and are optimal up to a constant factor since the compression functions in question have range of size22n.

Keywords: Hash Function, Preimage Resistance, Block Cipher, Beyond Birthday Bound, Foundations

1 Introduction

Almost as soon as the idea of turning a block cipher into a hash function appeared [14], it became evident
that, for typical block ciphers and security expectations, the hash function needs to output a digest that
is considerably larger than the block cipher’s block size. Consequently, many proposals of double-block-
length, or more generally multi-block-length, hash functions have appeared in the literature. In this article
we focus on a subclass of double-block-length constructions, where a3n-bit to 2n-bit compression function
makes two calls to a block cipher of2n-bit key andn-bit block.

Recently, for all three well-known members of this class—those being Tandem-DM [8], Abreast-DM [8]
and Hirose’s construction [6]—collision resistance has been successfully resolved [4, 6, 9, 10]: for Abreast-
DM and Hirose’s scheme,Ω(2n) queries to the underlying block cipher are needed to obtain a non-vanishing
advantage in finding a collision. For Tandem-DM,Ω(2n−logn) queries are needed, which is almost optimal
ignoring log factors.

On the other hand, the corresponding situation for preimage resistance is far less satisfactory. Up to
now, it has been an open problem to prove preimage resistance for values ofq higher than2n for either
Abreast-DM, Tandem-DM or Hirose. This is not to say that no dedicated preimage security proofs have
appeared in the literature. For instance, Lee, Stam and Steinberger [10] provide a preimage resistance bound
for Tandem-DM that is a lot closer to2n than a straightforward implication [15] of their collision bound
would give. However, a “natural barrier” occurs once2n queries are reached: namely, a block cipher “loses
randomness” after being queriedΩ(2n) times on the same key (for example, when2n−1 queries have been
made to a block cipher under a given key, the answer to the last query under that key is deterministic). Going
beyond the2n barrier seemed to require either a very technical probabilistic analysis, or some brand new
idea. In this paper, we show a new idea which delivers tight bounds in a quite pain-free and non-technical
fashion.
∗ Supported bythe National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174, by the National

Basic Research Program of China Grant 2007CB807900, 2007CB807901 and by NSF grand CNS 0904380.
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Hirose’s scheme
Abreast-DM / Tandem-DM
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Fig. 1: Preimage bounds for the classical constructions.

OUR CONTRIBUTION. In this paper, we prove that various compression functions that turn a block cipher of
2n-bit key into a double-block-length hash function, have preimage resistance close to the optimal22n in the
ideal cipher model. Our analysis covers many practically relevant proposals, such as Abreast-DM, Hirose-
DM and Tandem-DM. Bounds for the casen = 128 are depicted in Figure 1. At the heart of our result
are so-called “super queries”, a new technique to restrict the advantage of an adaptive preimage-finding
adversary.

To build some intuition for our result, let us start with considering the much easier problem of con-
structing a3n-bit to 2n-bit compression functionH based on two3n-bit to n-bit smaller underlying prim-
itives f andf ′. An obvious approach is simply to concatenate the outputs off andf ′, that is letH(B) =
f(B)‖f ′(B) for B ∈ {0, 1}3n. If f andf ′ are modeled as independently sampled, ideally random func-
tions, then it is not hard to see thatH behaves ideally as well. In particular, it is preimage resistant up to22n

queries (tof andf ′).
When switching to a block cipher-based scenario, it is natural to replacef andf ′ in the construction

above byE, resp.E′, both run in Davies–Meyer mode. In other words, for block ciphersE andE′ both
with 2n-bit keys and operating onn-bit blocks, defineH(A‖B) = (EB(A) ⊕ A)‖(E′

B
(A) ⊕ A) where

A ∈ {0, 1}n andB ∈ {0, 1}2n. While there is every reason to believe this construction maintains preimage
resistance up to22n queries, the standard proof technique against adaptive adversaries falls short signifi-
cantly. Indeed, the usual argument goes that thei-th query an adversary makes toE using keyK will return
an answer uniform from a set of size at least2n − (i − 1) and thus the probability of hitting a prespecified
value is at most1/(2n− (i−1)) < 1/(2n−q). Unfortunately, onceq approaches2n, the denominator tends
to zero (rendering the bound useless). As a result, one cannot hope to prove anything beyond2n queries
using this method. This restriction holds even for a “typical” bound of typeq/(2n − q)2.

When consideringnon-adaptive adversaries only, the situation is far less grim. Such adversaries need
to commit to all queries in advance, which allows bounding the probability of each individual query hitting
a prespecified value by2−n. While obviously there are dependencies (in the answers), these can safely be
ignored when a union bound is later used to combine the various individual queries. Since theq offset has
disappeared from the denominator, the typical boundq/(2n)2 would give the desired security.

Our solution, then, is to force an adaptive adversary to behave non-adaptively. As this might sound a bit
cryptic, let us be more precise. Consider an adversary adaptively making queries to the block cipher, using
the same key throughout. As soon as the number of queriesto this key passes a certain threshold, we give

2
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the remaining queries to the block cipher using this very keyfor free. We will refer to this event as asuper
query. Since these free queries are all asked in one go, they can be dealt with non-adaptively, preempting
the problems that occur (in standard proofs) due to adaptive queries. Nonetheless, for every super query
we need to hand out a very large number of free queries, which can aid the adversary. Thus we need to
limit the amount of super queries an adversary can make by setting the threshold that triggers a super query
sufficiently high. In fact, we set the threshold at exactly half6 the total number of queries that can be made
under a given key (i.e., it is set at2n/2 queries). This effectively doubles the adversary’s query budget,
since for every query the adversary makes it can get another one later “for free” (if it keeps on making
queries under the same key), but such a doubling of the number of queries does not lead to an unacceptable
deterioration of the security bound.

With this new technique in hand, we prove that the constructionH given above has indeed an asymptot-
ically optimal preimage resistance bound (a generalization of this result is also given) We revisit the proofs
of preimage resistance of the three main double-block-length, double-call constructions: Hirose, Abreast-
DM and Tandem-DM. An additional technical problem is that these compression functions each make two
calls to the same block cipher, as opposed to using two calls to independent block ciphers. Ideally, to get a
good bound, one would like to query the two calls necessary for a single compression function evaluation
in conjunction (this would allow using the randomness of both calls simultaneously, potentially leading to a
denominator22n as desired for preimage resistance). For instance, in the context of collision resistance for
Hirose-DM and Abreast-DM corresponding queries are grouped in cycles (of length 2 and 6, respectively)
and all queries in a cycle are made simultaneously: if the adversary makes one query in a cycle, the remain-
ing queries are handed out for free. Care has to be taken that these free queries and the free queries due to
super queries do not reinforce each other to untenable levels.

For Hirose’s scheme, there are no problems as the free queries introduced by a super query necessarily
consist of full cycles only. The corresponding (upper) bound on the preimage finding advantage is16q/22n

which is as desired, up to a small factor. For Abreast-DM, however, the cyclic nature can no longer be ex-
ploited: any super query introduces many partial cycles, yet freely completing these might well trigger a new
super query, etc.! Luckily, the original preimage proof for Tandem-DM [10] (which does not involve cycles)
provides a way out of this conundrum. The downside however is that our preimage bound for Abreast-DM
and Tandem-DM is slightly less tight than that for Hirose’s scheme. Ignoring negligible terms, it grows
roughly as16

√
q/2n. Although this is faster than one might wish for, it does imply thatΩ(22n) queries are

required to find a preimage with constant probability.
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Abstract. In this paper we present an algorithm that determines the
segmentation of operands for polynomial multiplication and computes
the optimal combination of multiplication methods. The result of the
algorithm can be used to implement highly efficient hardware multipli-
ers in GF (2k). Our calculation shows that thise implementations are
about 10 per cent smaller than the most efficient multipliers known from
literature.

Keywords: ECC, polynomial multiplication, hardware implementation

1 Introduction

During recent years elliptic curve cryptography (ECC) has gained significant
attention especially for devices such as wireless sensor nodes. Due to their scarce
resources hardware implementations are considered important. The polynomial
multiplication is the operation which is investigated most since it is one of the
most complex field operations and executed very often.

There exist many multiplication methods (MMs) for polynomiasl over GF (2k)
that apply segmentation of both k-bit long multiplicands into n parts (terms):
the classical and the generalized Karatsuba MM for n > 1; Karatsuba MM for
2- and Winograd MM for 3-term operands, that are both the special cases of the
generalized Karatsuba MM; Montgomery MM for 5-, 6- and 7- term operands
and many other MMs. These MMs lead to a reduced number of partial multi-
plications but require more XOR-operations in comparison to the classical MM.

The reduction of the number of partial multiplications improves notin all
cases the chip-parameter (area, energy consumption) of the multiplier. For small
operands, the classical MM is the favorite. A combination of classical MM for cal-
culation of small partial products with other MM can improve chip-parameters of
the resulting multipliers [1]. An additional means to improve the chip-parameters
of the multipliers is the reduction of the number of additions (XOR-operations).
The reduction can be achieved by using pre-defined processing sequences for
additions of partial products [2]. If an optimal combination of several multipli-
cation approaches with the reduced number of XOR-operations is found, the
area and energy consumption is reduced significantly.
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2 Algorithmically determining the optimum polynomial multiplier in GF (2k)

This paper presents an algorithm that determines the optimal combination
of multiplication methods for which an optimized processing sequence is already
pre-defined. For the assessment of the chip parameters we use XOR and AND
gates. We are aware of the fact that gate properties are technology dependent.
By initializing our algorithm with the specific area or energy consumption of
used gates it can be applied for each technology.

The rest of paper is structured as follows: in section 2 we give the exact
complexity of the six investigated MMs for their original processing sequences
and for our pre-defined optimized processing sequences. In addition we introduce
our algorithm to determine their optimal combination. The evaluation of our
results is discussed in section 3. The paper concludes with a short summary.

2 Complexity of multipliers

We describe the complexity of polynomial multiplications (without reduction) by
the exact number of the Boolean XOR and AND (#XOR, #AND) operations of
two 1-bit operands. This corresponds to the number of XOR- and AND-gates of
multipliers. The exact gate complexity (GC) of a certain multiplication method
(MM) GCMM for k-bit operands can be expressed by a tuple as follows:

GCMM
k = (#AND,#XOR) (1)

The minimal area and/or energy consumption of a multiplier can be calculated
based on its gate complexity and on the area and/or the energy consumption of
the used gates (AreaAND, AreaXOR and EAND, EXOR):

Area = #AND ·AreaAND + #XOR ·AreaXOR

Energy = #AND · EAND + #XOR · EXOR

(2)

MMs for large k-bit polynomials normally use segmentation of the polynomials
into n smaller m-bit terms which are then multiplied. To get the result the
partial products are added (i.e. XORed). If this principle of divide and conquer
is applied to an k-bit multiplier the resulting ASIC consist of a certain number
of m-bit partial multipliers with their own gate complexity GCMM

m :

GCMM
k=nm = (#MULT ·GCMM

m ,#XOR) (3)

The knowledge of the gate complexity of each partial multiplier allows to cal-
culate the gate complexity of full k-bits multipliers. The number of partial mul-
tiplications #MULT and the number of XOR-gates depend on the selected
multiplication method and on the segmentation of the operands. Each partial
multiplication can be implemented by any MM or even by any combination of
MMs. In order to optimize the complexity of a polynomial multiplier it is neces-
sary to determine the optimal combination of different MMs. Formula (3) shows
the assessment function that allows to compare different MMs given the fact
that the segmentation and the type of the used partial multipliers are the same.
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Algorithmically determining the optimum polynomial multiplier in GF (2k) 3

We determined the gate complexity according to (3) for the following MMs:
classical MM, Karatsuba MM by segmentation of operands into 4 terms, Mont-
gomery multiplication formulae for 5-, 6- and 7-term operands [3] and the gener-
alized Karatsuba (genKar) algorithm [4]. For each of these MMs we determined
the optimized processing sequence (Proc.Seq) and its gate complexity. Only for
the classical MM the processing sequence cannot be optimized. For the Karat-
suba MM with segmentation of operands into 4 terms we use the optimized
processing sequence presented by us in [5]. Due to the lack of space, we cannot
explain how the optimized processing sequences can be obtained. Here we give
here only their gate complexity, that we use in Algorithm 1 to find the optimal
combination of MMs. Table 1 shows the exact complexity of these MMs, with
and without using the pre-defined optimized processing sequences.

Table 1. Gate Complexity of investigated MMs

n MM #MULT #XOR, original MM #XOR, MM with Proc.Seq

4 Karatsuba 9 40m− 16 34m− 11

5 Montgomery 13 94m− 40 66m− 23

6 Montgomery 17 130m− 57 96m− 34

7 Montgomery 22 184m− 80 133m− 47

n classical n2 2mn(n− 1) − n2 + 1 2mn(n− 1) − n2 + 1

n gen.Kar. n2+n
2

4mn(n− 1) − 3n2−n
2

+ 1 m(2n2 + n− 3) − n2+n
2

Designing an optimal k-bit multiplier requires to know the exact complexity
of potential optimal m-bit partial multipliers. The same holds true for optimizing
the m-bit partial multiplier. So, to determine the optimal combination of MMs
Algorithm 1 is starting from 1-bit polynomials to up to k-bit polynomials. It is
essential to determine all possible segmentations for each length of polynomials
i, 1 < i ≤ k . The exact complexity of i-bit multipliers is calculated for each
MM and all segmentations of i. In the following processing steps in Algorithm
1 the optimal i-bit multiplier is used as the optimal m-bit partial multiplier.

While the algorithm itself is technology independent, there are two technol-
ogy dependent parameters to be considered. Technology dependent values such
as AreaAND, AreaXOR (or EAND, EXOR respectively) are input variables. De-
pending on the optimization goal - area or energy - we use respective parts of
eq. (2).

62



4 Algorithmically determining the optimum polynomial multiplier in GF (2k)

Algorithm 1

Input : AreaAND, AreaXOR//if optimization parameter is Area

MM = {MMclas,MM2,MM3, ...}//set of MMs with Proc.Seq

Initialization : MMopt(1) = MMclas(1); MMopt(i) = empty, 2 ≤ i ≤ k

Calculation :

for 2 ≤ i ≤ k//all operands of smaller length

for n|2 ≤ n ≤ i, n divides i//all possible segmentations

for each element MMj from MM

calculate Area(GC
MMj

i=nm)//see (1), (2), (3) and Table 1

if MMopt(i) = empty or Area(GC
MMj

i=nm) < Area(GC
MMopt(i)
i )

MMopt(i) = MMj

end if

end for

end for

for s|i > s > 0//all operands of smaller length

if Area(GCMMopt(s)
s ) > Area(GC

MMopt(s+1)
s+1 )

MMopt(s) = MMopt(s + 1)

end if

end for

end for

3 Evaluation of the optimization results

In order to benchmark our results we are using results from [1] and [4]1. Since we
are mainly interested in ECC we reconstructed data from [1] and [4] to get results
for polynomials with a length up to 600 bit2. Table 2 shows the gate complexity
and calculated area of multipliers for all three approaches. Please note that the
number of AND- and XOR-gates of our combinations of MMs are selected based
on the results of Algoritm 1, i.e. they reflect the number of gates for the smallest
polynomial multipliers for the IHP technology [6]. When comparing the results
it becames apparent that the number of AND-gates is smallest for [4]. But the
our approach and approach from [1] require by far less XOR-gates. This is the
reason for the much smaller area of our multiplier.

1 by results of [4] we denote those provided for the recursively applied generalized
Karatsuba MM

2 the reconstructed data for polynomials up to 128 bits are the same as those given
in [1] and [4]
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Algorithmically determining the optimum polynomial multiplier in GF (2k) 5

Table 2. Gate complexity of polynomial multipliers

reconstructed reconstructed our combination of
k, from [4] from [1] MMs with Proc.Seq
bit #AND #XOR area, #AND #XOR area, #AND #XOR area,

mm2 mm2 mm2

163 4536 23417 0.3516 7938 12820 0.2365 7938 11751 0.2221

233 6561 37320 0.5549 12150 23468 0.4137 12150 21066 0.3814

283 8748 48485 0.7227 13122 34108 0.5646 13122 30091 0.5106

409 17496 98039 1.4598 26244 67420 1.1186 29700 54418 0.9716

571 26244 147755 2.1991 39366 104704 1.7259 37179 93383 1.5560

4 Conclusion

In this paper we have presented an algorithm that determines the optimal seg-
mentation of operands and an optimal combination of multiplication methods
from a predefined set of MMs. To the best of our knowledge we are the first
authors that use MMs which have been optimized to reduce the number of XOR
operations, as starting set of such an algorithm. The area of the MM combina-
tions selected by our algorithm is in average about 10% and over 30% smaller
than the results presented in [1] and [4], respectively.
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Abstract. In this paper we present efficient implementations of several
code-based identification schemes, namely the Stern scheme, the Véron
scheme and the Cayrel-Véron-El Yousfi scheme. For a security of 80 bits,
we obtain a signature in respectively 1.048 ms, 0.987 ms and 0.594 ms.

Keywords: Cryptography, Zero-knowledge identification, coding theory,
efficient implementation.

1 Introduction

Code-based zero-knowledge identification and signature schemes are an interest-
ing alternative to classical (number theory based) digital signatures. Supposed
to resist quantum attacks, several code-based cryptosystems have been devel-
oped recently. Shor has showed a quantum algorithm which solves in polynomial
time the problems of discrete logarithm and factorization in [9], but no quan-
tum attack exists, so far, to solve the hard problems on which the code-based
cryptosystems are based.

In 1993, Stern proposed in [11] the first zero-knowledge identification scheme
based on the hardness of the binary syndrome decoding problem. A few years
later, Véron in [12] has designed a scheme with a lower communication cost.
Recently, Cayrel et al. in [3] have designed a scheme which reduce even more
this communication cost.

Using quasi-cyclic and quasi-dyadic constructions, several new constructions
like [1, 7] permits to reduce the size of the public matrices. We can use the same
kind of matrices in the context of zero-knowledge identification and signature
without lower the security of the resulting schemes.

Our contribution In this paper we provide, to our knowledge the first, efficient
implementations of the previous schemes for identification and signature. In [2],
the authors presented a smart implementation of the Stern scheme but it was
more a proof of concept than an efficient implementation.
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Organization of the paper Section 2 describes the Stern, Véron and Cayrel-
Véron-ElYousfi schemes. Section 3 describes the results of our implementations.
Section 4 concludes the paper.

2 Code-based zero-knowledge identification schemes

In code-based cryptography, there have been many attempts to design identi-
fication schemes. In such constructions, there are two main goals: On the one
hand, a prover wants to convince a verifier of its identity. On the other hand, the
prover does not want to reveal any additional information that might be used
by an impersonator. In the following, we will give an overview of three proposals
in this area.

2.1 Stern scheme

The first code-based zero-knowledge identification scheme was presented at
Crypto’93 by Stern [11], its security is based on the syndrome decoding (SD)
problem. It uses a public parity-check matrix of the code over the binary field
F2. This scheme is a multiple-rounds identification protocol, where each round
is a three-pass interaction between the prover and the verifier. A cheater has a
probability of 2/3 per round to succeed in the protocol without the knowledge
of the secret key. The number of rounds depends on the security level needed;
for 80 bits security level, one needs about 150 rounds. For instance to achieve
the weak and strong authentication probabilities of 2−16 and 2−32 according the
norm ISO/IEC-9798-5, one needs respectively 28 and 56 rounds.

2.2 Véron scheme

In 1996, Véron proposed in [12] a dual version of Stern’s scheme. It uses a
generator matrix instead of a parity-check matrix of the code, which has the ad-
vantage to reduce slightly the communication costs. Véron’s scheme, as Stern’s,
is a multiple rounds zero-knowledge protocol, where each round is a three-pass
interaction between the prover and the verifier, for which the success probability
for a cheater is 2/3. Moreover, Véron suggested in [12] to use special techniques
over finite fields to reduce the computation and storage complexity of his scheme.

2.3 Cayrel-Véron-El Yousfi scheme

In 2010, Cayrel, Véron, and El Yousfi (CVE) presented in [3] a five-pass
identification protocol using q-ary codes instead of binary codes. In addition
to the new way to calculate the commitments, the idea of this protocol uses
another improvement which is inspired by [8, 10]. The main achievement of
this proposal is to decrease the cheating probability of each round from 2/3 for
Stern’s and Véron’s schemes to 1/2. This allows to decrease the communication
complexity and then to provide the desired security level in fewer rounds

2
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compared to Stern and Véron constructions. Furthermore, this scheme offers
a small public key size, about 4 kBytes, whereas that of Stern and Véron
scheme is almost 15 kBytes for the same level of security. It is proven in [3] that
this scheme verifies the zero-knowledge proof and its security is based on the
hardness of the syndrome decoding problem defined over Fq.

Since a large public matrix size is one of the drawbacks of code-based
cryptography, there have been many proposals which consists of replacing the
random codes by particular structured codes, namely quasi-cyclic proposed by
Gaborit and Girault in [5] or quasi-dyadic codes proposed by Miscozki and
Barreto in [7]. We can use the both variants in the three identifications schemes
presented above, in order to store the public matrix more efficiently.

We can also mention that the three presented identification schemes can
be turned into secure signature schemes by using the idea of Fiat-shamir
paradigm.

3 Efficient implementation

3.1 Description

In total, six different schemes have been implemented in C: the Stern, Véron
and CVE identification schemes and the corresponding signature schemes based
on the Fiat-Shamir transform [6]. The idea of the transform is to split the iden-
tification scheme in two parts. In the first part, the signer runs the identication
scheme as before, but only recording the responses without any checks. In the
second part, the verifier replays the saved responses and performs the necessary
checks. This also explains the relatively high signature size of schemes based on
the Fiat-Shamir transform. It also shows the varying sizes of the signatures, as
the given responses change from run to run with high probability.

All implementations use the SHA-3 finalist Keccak [4], both as hash function
and as random oracle. All tests have been carried out on an Intel(R) Core(TM)2
Duo CPU E8400@3.00GHz machine, the source code is publicly available.1.

3.2 Results

The following tables give the timings of some test runs. For the signature schemes
files of size about 1 MB, 10 MB and 25 MB have been used. As expected, the
actual responses (i.e. challenges) vary from run to run. The signatures sizes in
Table 2 are taken as approximate values across multiple runs.

As the code of the implementations does not use any object-oriented features,
a straightforward efficient Java implementation should be possible as well.

1 http://cayrel.net/spip.php?article189
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Stern Véron CVE
Rounds 28 28 16

n, r, w 768, 384, 76 768, 384, 76 144, 72, 55

Security level 280 280 280

Random 1.048 ms 0.987 ms 0.594 ms

n, r, w 1024, 512, 128 1024, 512, 128 256, 128, 97, 256

Security level 273 273 2143

Quasi-Cyclic 1.893 ms 1.634 ms 1.829 ms
Quasi-Dyadic 2.655 ms 2.522 ms 1.775 ms

Table 1. Timing results for Stern, Véron and Cayrel, Véron, and El Yousfi (CVE)
identification schemes.

Stern Véron CVE
Rounds 28 28 16

n, r, w 768, 384, 76 768, 384, 76 144, 72, 55

Security level 280 280 280

Message size [by.] Random (Sign/Verify [ms])
1.363.024 0.008/0.007 0.008/0.007 0.013/0.012

10.317.040 0.055/0.054 0.054/0.054 0.106/0.118

23.766.127 0.126/0.125 0.124/0.124 0.247/0.243

Signature size [by.] 60.000 60.000 15.000

n, r, w 1024, 512, 128 1024, 512, 128 256, 128, 97, 256

Security level 273 273 2143

Message size [by.] Quasi-Cyclic (Sign/Verify [ms])
1.363.024 0.008/0.007 0.008/0.007 0.014/0.013

10.317.040 0.056/0.053 0.055/0.054 0.108/0.105

23.766.127 0.129/0.126 0.125/0.125 0.247/0.243

Message size [by.] Quasi-Dyadic (Sign/Verify [ms])
1.363.024 0.009/0.008 0.009/0.008 0.014/0.013

10.317.040 0.056/0.054 0.056/0.055 0.104/0.108

23.766.127 0.127/0.125 0.126/0.126 0.247/0.243

Signature size [by.] 80.000 80.000 25.000

Table 2. Timing results for Stern, Véron and Cayrel, Véron, and El Yousfi (CVE)
signature schemes. The signature sizes are approximate values.
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4 Conclusion

In this paper, we have described three existing code-based identification and
signature and have provided a detailed comparison of their implementation. As
a result, we obtain three very fast signature (in less than 1ms) but very long
signature size from 25.000 for CVE to 80.000 bytes for Stern and Véron. The
security of the implementations faces side-channel attacks (like SAP and first
order DPA) has been studied in [2] but the security of those implementations
faces fault-injection or higher order DPA has not been studied yet. The source
codes are available here : http://cayrel.net/spip.php?article199.
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This work is concerned with the development of a fast DES bitslice brute-
force software tool which utilize consumer Graphics Processing Units(GPUs)
and shows improved performance over existing implementations [1]. The use
of modern GPUs in high-performance computing is a new trend, where such
devices may be useful for o�oading computationally intensive tasks for achieving
a signi�cant performance boost in comparison with traditional use of general
purpose Central Processing Units (CPUs). Programming GPUs are supported
by new programming models based on the C language, e.g., the most widely
used vendor-speci�c CUDA [6] and and the industry-wide OpenCL standard [4].

Modern GPUs can be attractive for parallel processing because these ar-
chitectures by design have hundreds of processing cores and have high on-chip
bandwidth close to one order in magnitude larger than modern CPUs. These
GPUs have good support for hiding latency in memory transactions through
massive multithreading with low context switch overhead. The processing of
instructions in the thread contexts is based on the Single Instruction Multiple
Data (SIMD) processing paradigm and is therefore suitable for algorithms that
can expose a high degree of data parallelism.

The Data Encryption Standard (DES) was chosen as a case study because
the block-cipher uses permutations and substitutions of data, rather than the
arithmetic calculations which GPUs are known to excel in. The goal is to eval-
uate the potential of GPUs for this type of application. Furthermore, the DES
cipher has a limited 56 bit key space, which has been successfully cracked by [3]
on FGPAs. However, FGPAs are much more expensive than GPUs and requires
much more programming e�ort in comparison with CUDA and OpenCL.

A bitsliced [2] implementation of DES was initially considered to be a suit-
able candidate algorithm for implementation on GPUs. The bitslice method is
an emulated SIMD, that utilizes the n-bit registers as a slice of the data vector,
making it possible to permute n bits per operation. Our tool is based on highly
optimized lookup tables called SubstitutionBOXes (SBOXs) [5]. The nonlinear

∗Department of Informatics and Mathematical Modelling. The work has been supported
by grant no. 09-070032 from the Danish Research Council for Technology and Production
Sciences and with resources of GPULAB (http://gpulab.imm.dtu.dk).
†Department of Mathematics
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SBOXs are converted from a lookup table to pure logic, which on average re-
quires 56 operations. Thus, this is much faster than cutting the distinct key
values from the slice and sending them through a lookup table thereby sub-
stituting excessive high-latency data transfers with bitwise operations enabling
fast processing.

The linear permutations are optimized by �nding permutations of permu-
tations and �nally reducing them to a single permutation. With permutation
reduction in a bitslice implementation, the need to permute data can be circum-
vented, by letting the ordering of bitslices in the SBOXs function be permuted,
which in e�ect eliminates most movement of data.

An a�ordable Nvidia GeForce GTX 275 gaming card controlled by the CPU
host has been used for the initial development. A naive implementation shows
a ten-fold speedup in comparison with the same method running on a Intel
CoreI7@2.66GHz CPU. However, this implementation does not utilize the scarce
low-latency memory locations (i.e. registers, shared memory and constant mem-
ory) on the GPU. Therefore by utilizing these low-latency memories it is possible
to reduce the memory fetch time to a fraction, which is found to achieve 13 times
the CPU speed.

Further analysis of the model shows that the implementation uses more
registers than can be made available per thread on the Nvidia GPUs. The im-
plementation was improved by hard coding static parts of the model thereby
reducing the registers per thread to below the hardware limit of 127 registers
per thread. This improvement let the entire model rely on using the fast regis-
ters, resulting in 18 times the CPU speed. With a number of minor additional
improvements the current model achieves 20 times speedup compared to the
CPU.

We �nd that the resulting implementation is able to search up to 680 million
keys/s on a GTX 275, which approximately doubles the performance in com-
parison with previous work [1] on a similar architecture. The major di�erence
between the two models is found in the handling of the bitslices. The model
described in [1] relies on precomputed bitslices fetched from constant memory.
In the present work, the model programmed in CUDA calculate all bitslices at
runtime, which is faster than fetching them from memory because the entire
model now �ts in the registers.

Further performance improvements will be pursued on AMD GPUs which
will requires an implementation of the model in OpenCL. Such an implemen-
tation will also be able to execute on general heterogenous hardware setups
(including Nvidia GPUs) and can therefore be subject to additional investiga-
tions in performance comparison and di�erences. These �ndings together with
latest results will be presented at the conference.

We remark that a perspective in this work is that this type of DES brute-
forcer can be distributed over any number of GPUs, thus supplying organized
groups the power of a super computer. It is doubtful that any organization
have the computing power to exhaust the key space of modern ciphers, but
relative short password searches could theoretically be conducted successfully
on distributed GPUs.
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Abstract. We present the first implementation of a full lattice basis
reduction for graphics cards. In this work, we show that graphics cards
are well suited to apply alternative algorithms that were merely of the-
oretical interest so far due to their enormous demand for computational
resources and requirements on parallel processing. We modified and opti-
mized these algorithms to fit the architecture of graphics cards, in partic-
ular we focused on Givens Rotations and the All-swap reduction method.
Eventually, our GPU implementation achieved a significant speed-up for
given lattice compared to the NTL implementation running on an CPU
(e.g., a speed-up factor of 13.7 for the same financial investment), pro-
viding at least the same reduction quality.

Key words: Lattice Basis Reduction, SBP, Parallelization, Givens Rotations,
All-Swap Algorithm, CUDA

1 Introduction

The lattice basis reduction is an important and interesting tool in linear alge-
bra. Various applications concern the factorization of polynomials and integer
numbers as well as solving knapsack, hidden number problems, and many more
problems [4, 5] – all enabled by finding a relatively short lattice basis (Short-
est Basis Problem or SBP) and the shortest vector for a given lattice (Shortest
Vector Problem or SVP). In particular, the latter method could also be used to
break instances of the RSA public-key cryptosystem [7]. Beside this factoring-
based cryptosystem, there is the class of lattice-based cryptosystems that are
assumed to be secure against attacks with quantum computers. Thus, the per-
formance of lattice basis reduction is indeed essential for reasonable security
estimations.

Our contribution: In this paper, we will adopt and improve parallel algo-
rithms for lattice basis reduction to achieve optimal results on graphics cards. A
major part of a LLL-based lattice basis reduction algorithm is the orthogonal-
ization.
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2 Previous Work

Shortest lattice vector enumeration, virtually the main part of the BKZ which
targets the approximated SVP, was ported to GPUs [3]. But in order to obtain
reasonable advances in performance it still requires a strong pre-reduction of the
lattice basis and hence a fast LLL-algorithm.

3 Preliminaries

In linear algebra, a lattice in Rn is a discrete, additive, Abelian subgroup of Rn

consisting of points.

Definition 1 (Lattice). Let b1, b2, . . . , bk ∈ Rd, k ≤ d linear independent, the
set

L =

{
u ∈ Rd|u =

k∑
i=1

aibi, ai ∈ Z

}
is called a lattice.

Every lattice L can be represented by a set B = {b1, b2, . . . , bk} of column vectors.
We call B the basis of the lattice L, thus L(B) is the set of all finite, integer linear
combinations of the basis vectors bi.

Detailed information on lattices and their properties can be found in [1].

Lattice Basis Reduction The lattice basis reduction deals with the problem to
find a short lattice basis for a given lattice basis (SBP). In practice, finding a
shortest vector (SVP) in this basis is of particular importance. In 1982 Lenstra,
Lenstra and Lovász proposed the first lattice basis reduction [6] that terminates
in polynomial runtime, according to the lattice dimension, which is known as
the LLL-algorithm.

4 Computations on Graphics Cards

General-purpose computing on graphics processing units (GPGPU) is the shift
of computations that are traditionally handled by the central processing unit
(CPU) or host processor, to the graphics processing unit (GPU), also known
as device. In this paper, we focus on nVidia GPUs and CUDA that can be
programmed with C for CUDA, a C language derivative with special extensions.

5 Lattice Basis Reduction on Graphics Cards

Lattice basis reduction has three main phases: first the basis orthogonalization
(computation of Gram-Schmidt coefficients), second the size reduction of the
basis and third the basis permutation.
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5.1 Parallel Orthogonalization

For parallel orthogonalization the QR decomposition is a tool that generates
an orthogonal basis. In this paper, we focus on a parallel variant of the Givens
rotations. Detailed informations on the QR decomposition and the corresponding
methods can be found in [1].

Our approach realizes an effective way to implement the Givens rotations
whereas one thread block is responsible for two affected rows implied by a Givens
rotation to insert a single zero.

5.2 Parallel Basis Size Reduction

We propose a novel pattern that optimally fits the architecture of graphics cards.
However, we decoupled the size reduction of the basis from that of the Gram-
Schmidt coefficients. Hence, we first reduce the Gram-Schmidt coefficients and
compute the nearest integer at a time.

Next, we reduce the basis with help of the pre-computed Gram-Schmidt
coefficients involving a row-wise weighted sum.

5.3 Parallel Basis Permutation

The so-called All-Swap [8] lattice basis reduction intends to process as much
as possible of the entire basis with respect to orthogonalization, size reduction
and permutation by swapping. The algorithm works iteratively in competitive
alternating phases, an odd and an even phase.The original All-Swap floating
point algorithm was proposed by Heckler and Thiele [2].

Here, we introduce a variant from that we expect a better reduction quality
due to a higher number of swap operations. Instead of swapping two adjoining
vectors by which means sorting them according to their squared 2-norms ‖b∗i ‖

2
2,

blocks of size 2l, with 2l ≤ k, vectors will be sorted. Our so called ordered
All-swap approach is represented by Algorithm 1.

The reduction parameter δ′ is deduced from the original δ that is included
in the LLL-algorithm.

6 Results

For our experiments, we used a nVidia GTX 280 graphics cards with 1 GiB
video RAM and an Intel Core 2 Quad running Windows 7 64-bit. The results
were obtained using the CUDA toolkit and SDK 3.2 and the CUDA driver
260.89.

To provide reasonable results for the full lattice basis reduction, we consider
random lattice bases , and random lattices bases in Hermite normal form.

Compared to runtime results from NTL1 that involves the Schnorr-Euchner
algorithm in double floating point precision using Givens rotations (G_LLL_FP()

1 All measurements were performed on the same system as presented above.
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Algorithm 1 Ordered All-Swap Lattice Basis Reduction

Input: Lattice basis B = (b1, b2, . . . , bk) ∈ Rd×k, reduction parameter δ′ with δ′ > 4
3

and block-size parameter l
Output: δ′-All-swap-reduced basis B

phase = 0
while sorting is possible for any block in phase do

Approximate basis B′ = (B)′

Compute Gram-Schmidt coefficients µi,j

Size reduce the basis B
Split the basis into m blocks of size 2l starting with b1+phase·2l−1

for i = 1 to m parallel do
Using an appropriate sorting algorithm to sort the block
b2l(i−1)+phase·2l−1+1, . . . , b2li+phase·2l−1 by its squared 2-norms, i.e.

‖b∗r‖22 ≤ δ
′ ‖b∗s‖22 , 2l(i− 1) + phase · 2l−1 + 1 ≤ r < s ≤ 2li+ phase · 2l−1

phase = phase⊕ 1
end for parallel

end while
Approximate basis B′ = (B)′

Compute Gram-Schmidt coefficients µi,j

Size reduce the basis B

our implementation achieves a speed-up of about 12.5 (l = 1) and 18.6 (l = 2)
on average.

Figure 1 shows the runtime performance for both randomly chosen lattice
bases and randomly chosen lattice bases in Hermite normal form using a loga-
rithmic scale.

Normalizing the speed-up of the GPU-based implementation according to
the higher cost of its computing system, we still have a 13.7 times higher perfor-
mance compared to the corresponding CPU-based system for the same amount
of financial investment.

7 Conclusion and Future Work

In this paper we presented the first implementation of a full lattice basis re-
duction on graphics cards. We achieved promising results with respect to other
CPU-based implementations, such as NTL. We introduced a variant of the All-
swap algorithm that delivers better reduction results with decreased runtime
with respect to given lattice bases. Our implementation can also be used to find
short vectors, however at the cost of a higher runtime.

Future work involves the OpenCL framework that offers quadruple floating
point precision in the next versions. Thus, it would become possible to reduce
either lattice bases with very high dimensions or lattice bases consisting of large
entries which is, as of now, restricted by the current GPU generation. Alter-

76



Full Lattice Basis Reduction on Graphics Cards 5

100 200 300 400 500 600 700
0.1

1

10

100

1.000

Lattice basis dimension

R
un

tim
e 

in
 s

ec
on

ds

 

 
CPU: NTL, G_LLL_FP(), HNF

GPU: Block−size 21, HNF

GPU: Block−size 22, HNF

CPU: NTL, G_LLL_FP(), rand.

GPU: Block−size 21, rand.

GPU: Block−size 22, rand.

Fig. 1. Runtime for random lattice bases and random lattice bases in Hermite normal
form with δ′ = 1.34 (l = 1), δ′ = 1.55 (l = 2) and δ = 0.99 (NTL)

natively, future work could apply the proposed approach as a pre-reduction for
lattice enumeration.
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1 Introduction

Efficient implementation of cryptographic primitives either on hardware or soft-
ware gave rise to “cryptographic efficiency” issues. Issues surround the key
length, speed and computational effort to execute. Suggestions have been made
that ECC should be the preferred asymmetric cryptosystem when compared to
RSA since it provides security with shorter keys [8]. However, in certain situa-
tions where a large block needs to be encrypted, RSA is the better option than
ECC because ECC would need more computational effort to undergo such a task
since ECC is “computational intensive” [7]. In 1998 the cryptographic scheme
known as NTRU was proposed with better “cryptographic efficiency” when com-
pared to RSA and ECC [6]. Much research has been done to push NTRU to the
forefront [5]. However, this paper would focus on making comparisons against
discrete log based cryptosystems and elliptic curve based cryptosystems only.
The cryptographic scheme in this paper is based on what the authors define
as the Linear Diophantine Equation Discrete Log Problem (LDEDLP). It is
not the intention to go into “provable” security concepts in this initial stage.
The immediate objective is to be able to set up a mathematical concept that
exhibits one-way characteristic functionality and differs from conventional “one-
way” mathematical concepts (i.e. discrete log problem, integer factorization, el-
liptic curves etc.). The reason? For better “cryptographic efficiency”. Specifically,
the LDEDLP arises within the scheme when one attempts to solve the matrix
decomposition problem. The ability to re-produce the corresponding two square
matrices from its product where both matrices are private and one of them is
singular is related to solving the LDEDLP (albeit in a stronger setting when
compared to the situation where certain parameters are known). The authors
propose that the LDEDLP as outlined in this paper is also another discrete log
problem that has secure cryptographic qualities coupled with the above described
“cryptographic efficiency” qualities. The intractability of the LDEDLP will be
presented. Results relating the LDEDLP to the Diffie Hellman key exchange and
the RSA cryptosystem will be discussed. Next, the AA β-cryptosystem which is
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based upon the LDEDLP will be introduced. The AA β-cryptosystem transmits
a ciphertext consisting of three parameters and utilizes only the multiplication
operation for encryption and decryption. Finally, we will conclude by comparing
“cryptographic efficiency” characteristics of the AA β-cryptosystem with RSA
and ECC cryptographic schemes.

2 The linear diophantine equation discrete log problem
(LDEDLP)

The LDEDLP is based upon the linear diophantine equation which is of the form
U = V x+Wy. The following definitions would give a precise idea regarding the
LDEDLP.

Definition 1. Let U = V x∗+Wy∗. We define the pair (x∗, y∗) as the preferred
integers used to obtain U. The pair (x∗, y∗) is an element from the set of solutions
of U = V x + Wy which contains infinitely many elements.

Definition 2. The linear Diophantine equation given by U = V x + Wy is de-
fined to be prf-solved when (x∗, y∗) are found in order to obtain U . The LDEDLP
is solved when U = V x + Wy is prf-solved.

Remark 1. If the solution set of an equation is restricted to a finite set or can be
limited to a finite number of possibilities the solution set can be found by brute
force, that is, by testing each of the possible values.

Lemma 1. The linear Diophantine equation U = V x∗+Wy∗ is computationally
infeasible to be prf-solved by brute force.

Definition 3. (DH-Diophantine equation) From the Diffie Hellman key exchange
procedure (ga ≡ A(modp)) we define the DH-Diophantine equation as A = ga−pt
for t ∈ Z.

Definition 4. (RSA-Diophantine equation) From the RSA encryption proce-
dure (C ≡ Me(modN)) we define the RSA-Diophantine equation as C = Me −
Nt for t ∈ Z.

Proposition 1. If the linear Diophantine equation U = V x + Wy is compu-
tationally feasible to be prf-solved then both the DH-Diophantine equation and
RSA-Diophantine equation are computationally feasible to be prf-solved.

3 The AA β-Cryptosystem

The AA β-cryptosystem is based upon the AA β-function which was first intro-
duced by Ariffin and Abu in 2009 [1]. It was cryptanalyzed by Blackburn in
2010 [3]. In this work we incorporate the AA β-matrices that were introduced by
Blackburn in his cryptanalysis. It has to be mentioned that the success of the
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attack was not due to the AA β-function but was due to weaknesses in the design
of the public key. An attempt to strengthen against the attack was disclosed by
Ariffin et. al. in 2010 [2]. However, it was not successful. In this work we re-
examined Blackburn’s attack and exploited the AA β-matrices to strengthen the
cryptosystem. We state here the definition of the AA β-function together with
other definitions in relation to it.

Definition 5. The set of binary strings with length of k bits is defined by Sk ={
s = {bi}k−1

i=0 |bi ∈ {0, 1}
}

where k ∈ Z+.

Definition 6. Let α, β ∈ Z+ and α < β and both are integers of k-bit length.
The AAβ-function is defined as

AAβ(xi) =
{

(αxi−1 + xi) if
(xi−1 + βxi) if

bi = 0
bi = 1

where i = 0, 1, 2, . . . k − 1 x−1 = 0 x0 ∈ Z+ and s ∈ Sk.

Lemma 2. [1] Let s ∈ Sk and AA β a function as defined in Definition 6, let
G = x0 ∈ Z+ be a generator then AAs

β (G) = AAs
β (1) ·G = mG where m ∈ Z+.

The integer generated by A will be denoted mA while the integer generated by B
will be denoted mB.

3.1 The AA β - matrices

In 2010, Blackburn identified another mechanism to construct either the integer
mA or mB when conducting the attack upon the AA β-cryptosystem then. Let
the integer matrices (to be known as the AA β-matrices) be identified as follows:

A0 =
(

1 α
1 0

)
,A1 =

(
β 1
1 0

)
Correspondent A (Along) and B (Busu) will generate their private strings dA, dB ∈
Sk respectively. Along will compute the integer matrix given by

A = Abk−1Abk−2 · · ·A0

where the choice of the matrix Abj
to be utilized depends on the binary element.

If the binary is 0 choose A0 otherwise choose A1. The integer mA is the top
left entry of the resulting matrix. Busu will also compute his mB in the same
manner (Busu’s resultant integer matrix will be denoted as B).

We will now define parameters needed for the renewed AAβ-cryptosystem.

Definition 7. The private ephemeral base matrix GA1 is a 2 X 2 singular ma-
trix. We will denote the integers within the matrix as follows:

GA1 =
(

gA111 gA112

gA121 gA122

)
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Each element will be chosen of “minimum length” (i.e. as long as GA1 is a
singular matrix). There will be three base matrices namely GA1,GA2 and A2.

Definition 8. The ephemeral private seed is a k-bit random binary strings dA ∈
Sk.

Definition 9. The ephemeral private key is the 2 X 2 non-singular matrix A,
and its inverse A−1. For efficient implementation integers within the matrix A,
are reduced in size by taking only the first 2k-bits of the resulting integer. We
will denote the integers within the matrix as follows:

A1 =
(

a111 a112

a121 a122

)
Observe that, differing from the work by Ariffin and Abu in 2009, instead of just
utilizing a111 as the private key, we know utilize the whole resulting matrix.

Definition 10. Along’s public key, are the matrices E1A,E2A,E3A and E4A

defined by:
E1A = GA1A1 (1)

E2A = GA1A2 (2)

E3A = GA2A1 (3)

E4A = A−1
1 A2A1 (4)

Observe that the matrices (1)-(4) are all singular. The maximum length of an
element in E1A is (2k + l1)-bits, where l1 is the length of largest value in GA1,
the maximum length in E2A is (l1 + l2)-bits, where l2 is the length of largest
value in A2, the maximum length in E3A is (2k + l3)-bits, where l3 is the length
of largest value in GA2 and the maximum length in E4A is (3k + l2)-bits.

Definition 11. Along’s corresponding private keys are given by:

D1A = A−1
1 A2 (5)

dA = C3A
−1
1 (6)

D2A = (E3A − dA)−1 (7)

The parameters within D2A must be chosen such that the inverse exists.

Definition 12. Suppose Along is sending a plaintext to Busu utilizing Busu’s
public keys E1B ,E2B ,E3B and E4B . Let M be Along’s plaintext and KA be
Along’s ephemeral session key. Both M and KA are arbitrary 2 X 2 matrices.
Let C1 = KAE1B + MKA, C2 = KAE2B + ME3B and C3 = KAE4B be the
ciphertexts that Along will relay to Busu.

Proposition 2. [C2 − (C1D1B)]D2B = M
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3.2 The AA β - public key cryptography scheme

The scenario is that Along will send an encrypted message to Busu. Busu will
provide Along with his public key pair E1B ,E2B ,E3B and E4B . Along will then
generate an ephemeral session key KA according to Definition 12. Along will
proceed to generate M and then compute C1, C2 and C3. Then Along trans-
mits the three-parameter ciphertext (C1,C2,C3) to Busu. Upon receiving the
ciphertext from Along, Busu will proceed to compute [C2 − (C1D1B)]D2B with
his private keys D1B and D2B which would result in the plaintext M. The usage
of private ephemeral session key by Along is to ensure that the known plaintext
attack will not be successful.

4 Conclusion

The AA β-cryptosystem is secure as long as the LDEDLP is intractable. The LD-
EDLP has a preferred solution originating from a set of infinitely many solutions.
The private key length still remains to be seen. The simplicity of the scheme can
be gauged in terms of speed and computational effort to operate. It is known
that RSA and ECC is of order O(n3) when encrypting a message block of length
n whilst AA β-cryptosystem is of order O(n2) (utilizes basic arithmetic opera-
tion of multiplication). The AA β-cryptosystem also has the ability to encrypt
large plaintext blocks without having to endure the computational intensive op-
erations of the ECC, makes it a potential candidate that is “cryptographically
efficient”.
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Abstract. In this paper we introduce Γ -MAC[H,P ], a new MAC scheme based on universal
hash functions. An issue of Wegman-Carter-Shoup (WCS) based MACs, like the CWC-MAC
[11] or GMAC [14], is that their security breaks apart in the nonce-reuse szenario [2,10]. Our
new MAC scheme does not require a state or a (never-repeating) nonce for its security.
Most of the Block-Cipher based MACs are stateless. But, beside OMAC, they usually require
at least two n-bit keys. For Γ -MAC[H,P ], only one single n-bit key suffices. Furthermore, a
naive Γ -MAC[H,P ] instantiation based on l+1 block cipher invokations are needed to produce
a security tag.
Depending on the length of the authenticated message, our implementation of Γ -MAC[G,AES-
128] is faster than most other stateless MACs.
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1 Introduction

Message Authentication Code. Message authentication codes (MACs) are widely used cryp-
tographic primitives – utilized to verify the integrity and authenticity of messages, assuming
a secret key k shared by sender and receiver. MACs consist of two functions: MACk and
VFk. The authentication function MACk is used by the sender to generate a security tag
t = MACk(m) for a message m. Given the pair (m, t), the receiver calls the verification
function VFk(m, t), which returns true if t actually has been generated as t = MACk(m).
The security tag t ought to be short (typically 32–256 bit) to minimize the overhead for
authentication. The attacker attempts to forge a message, i.e., to find new (m′, t′)-pairs with
VFk(m

′, t′) =true. A MAC is secure if it is hard for the adversary to succeed. We consider
chosen-plaintext existential forgery attacks, where the adversary is allowed to freely choose
messages and nonces, and succeeds by forging the tag for any fresh message.

Universal hashing. Information-theoretically secure MACs have first been studied by Gilbert,
Mac Williams and Sloane [8], and later by Wegman and Carter [18]. A strictly information-
theoretical approach would require very long keys or greatly limit the number of messages to
be authenticated under a given key. Thus, one typically combines the information-theoretical
part – a universal hash function – with an additional function, which is modelled as a ran-
dom function or permutation. There are two families of such MACs, which were studied so
far.

Universal MAC schemes. The first family is due to Wegman, Carter and Shoup. We denote
it as the “Wegman-Cater-Shoup” [16] (in short: “WCS[H,F ]”) approach. The WCS[H,F ]-
MAC is based on a family of ‘ǫ almost XOR universal hash functions (“ǫ−AXU”) H, and
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a family of (pseudo-)random functions (PRF) F . For h ∈ H and f ∈ F the WCS-MAC is
defined as WCSf,h(m, z) = h(m) ⊕ f(z), where m is the message and z is the nonce. The
WCS approach allows it to use the ǫ−AXU hash function h several times, if and only if z is
an never reused. If z is ever reused, one can compute the XOR h(m)⊕ h(m′) of the hashes
of two different messages and typically break the MAC [10]. MACs following this approach
are well studied and improved over the years for cryptographic purposes by Brassard [5],
Krawczyk [12], Rogaway [15], Stinson [17], and other authors [1, 3, 4, 7, 9, 14].

The second family follows the UMAC[H,F ] resp. FCH paradigm (we read this as “Func-
tion, Concatenation, Hash”) from Black et al. [3]. We call MACs that fit into this scheme
WMAC[H,F ], like Blake and Cochran in [2]. Let H a family of ǫ always universal (“ǫ−AU”)
hash functions and F a family of PRFs. For For h ∈ H and f ∈ F the WMAC is defined
as WMACf,h(m, z) := f(h(m), z) for a message m and a nonce z. Alike, as WCS[H,F ], the
message is hashed using a randomly chosen hash function h out of an family of universal
hash functions. In contrast to WCS, the hash output is not XOR-ed with the output of a
random function, but is used as a part of the random function’s input, jointly with the nonce
z. Since the internal hash values h(m) are only used as the input for a random function, the
security of WMAC[H,F ] remains intact even if the nonce z is re-used. In fact, one doesn’t
actually need a nonce, but can securely use t = f(h(m)). While the nonce z may not be
necessary to defend FCH-MACS against forgeries, many security protocols employ a time
stamp, a sequence counter or something similar anyway. Using this auxiliary information as
an additional “nonce” input to the authentication and to the verification function can be
useful as a defense against “replay attacks” – i.e., resending an old message (the adversary
hopes that it will be misunderstood in the new context) and the old authentication tag.

Our Contribution. At first we introduce ǫ-APU, a new class of universal hash functions.
Informal we say H is ǫ-APU, if for a random chosen h ∈ H, it is very unlikely that 1)
h(m) = c for any tuple (m,c), and 2) h(m) = h(m′) for two distinct inputs m and m′.
Then we present Γ -MAC[H,P ], a stateless MAC scheme based on a family of ǫ-APU has
functions H and a (pseudo-)random permutation (PRP) p ∈ P . For h ∈ H, Γ -MAC[H,P ]
is defined as Γh(m) := ph(m)(|m|). Unlike WCS[H,F ] and WMAC[H,F ], our MAC scheme
needs only one key to determine unambiguously the universal hash function h from H. The
PRP p is determine unambiguously from the output value of h. Γ -MAC[H,P ] is the second
stateless universal MAC scheme – beside WMAC[H,F ]– that is known in literature. The
major advantage of Γ -MAC[H,P ] over WMAC[H,F ] is that we only need one key. On
closer look, this can be also a disadvantage because block cipher must be resistant against
related key attacks. Therefore, we present a ǫ-AXPU hash families. Instantiated with such
a hash family the used block cipher must not be resistant to related key attacks that exploit
a XOR difference between keys. Furthermore, the key scheduler must be invoked if the
authentication or verification function is called. A analysis showed that the performance of
Γ -AES, a Γ -MAC[H,P ] instance based on AES-128, does not suffer from this key scheduler
invocation issue.

2
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Related Work. Modern universal hash function based MACs, like GMAC from McGrew and
Viega GMAC [14], VMAC from Krovetz and Dai [6, 13] or Bernstein’s Poly1305-AES [1]
are similar in spirit to Γ -MAC[H,P ], but employ two n-bit keys, while a single one suffices
for Γ -MAC[H,P ]. Like GMAC, the presented instance of Γ -MAC[H,P ] employs universal
hashing based on Galois field multiplications, which run very efficiently in hardware. Hand-
schuh and Preneel [10] pointed out that MACs based on universal hashing are brittle, with
respect to their combinatorial properties, and that some are extremely vulnerable to nonce
reuse attacks. Black and Cochran [2] recently presented WMAC[H,F ]. This MAC scheme
matches the security bounds given by the best known attacks from Handschuh and Preneel.
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Abstract. The concept of secure sketches has been previously presented
as a special form of fuzzy commitments. Contrary to common commit-
ment schemes, fuzzy commitments allow for unlocking the committed
value also using a witness sufficiently close to the exact one. Previous
approaches towards secure sketches, however, rely on error correcting
codes and provide an information theoretic security. We present a new
approach that builds upon computational security by making use of the
discrete logarithm problem. We show that it is advantageous in several
aspects and describe a practical application in the field of image process-
ing.

Keywords: secure sketch, discrete logarithm, fuzzy commitment scheme,
image processing

1 Introduction

Matching of two different datasets can often be achieved by comparison of the as-
sociated cryptographic hash values. However, due to the nature of cryptographic
hash functions, minutest changes to one of the datasets results in tremendous
changes in the hash value. Consequently, hash functions are not well suited for
matching of similar, but not equal, datasets.

A similar problem arises when using commitment schemes. In such a scheme,
a value is committed into a commitment that can be shared, while the value
itself remains secret. Revealing a witness at a later time allows for decommitting
the commitment and so revealing the original value, additionally proving the
authenticity as the commitment had been published. In this case, only the exact
witness can be used for decommitting, although there might be situations in
which the witness is degraded to some extent.

As an example, consider a court proceeding where a photograph showing
several people is used as evidence. In order to protect the identity of eyewit-
nesses on the picture, the photograph should not be published. However, at any
time it should be possible to prove the existence of the evidence, and more im-
portantly, the information provided by it. One possibility would be to publish
only a cryptographic hash value of the image. A printed copy containing only
parts of the evidence and brought to court cannot be validated then. The printed
copy is partly degenerated by the printing process, therefore the hash value is
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likely to no longer match. Direct comparison, however, is not desirable either,
as this would require revealing the original. To solve this problem, we describe
the use of a fuzzy secure sketch, where any degenerated partial copy of a secret
commitment can be validated without revealing the original at all.

2 Related work

This work builds on the previous approaches towards fuzzy commitments and
secure sketches as presented by Juels and Wattenberg [1], as well as Dodis et
al. [2]. Instantiations of these approaches make use of error correcting codes and
provide an information theoretic security. Nevertheless, several problems arise
in these approaches, affecting both the blinding as well as binding properties of
the commitment schemes involved, resulting in significant difficulties at practical
use.

For linear error correcting codes, the code-offset construction is defined for
a value w to be committed, F (w) the commitment and h a hash function as
F (w) = (h(w), syn(w)), with syn(w) the error correction syndrome.

Dodis et al. present [2] a rigorous formalization of secure sketches, where a
secure sketch basically consists of two functions, SS and Rec, so that for a value
w to be committed Rec(w′,SS(w)) = w for any value w′ sufficiently close to w.
In case of the code-offset construction, SS(w) can be defined as SS(w) = syn(w),
while Rec provides error correction to recover w from w′ and the syndrome of
w.

3 Problems of previous approaches based on error
correcting codes

Several problems may arise from the use of the previously described schemes,
especially through the use of a [n, k, 2t+ 1]−error correcting code, where k bits
are encoded into n-bit code words with t-bit errors correctable. These problems
are as follows.
2nd Preimages. The additional storage of a hash value along the sketch is cru-
cial, as 2nd preimages of a sketch alone are potentially trivial. The parity check
matrix P has to be known for a linear error correcting code, as syn(w) = wPT .
However, because PT ·P = 1, a preimage w′ for which syn(w′) = syn(w) can be
simply found, as syn(w)P = w′.
All Preimages. In a similar fashion, it is also possible to enumerate all preim-
ages, that are all w′ for which syn(w′) = syn(w). There are at most 22k−n distinct
w′ for which syn(w′) = syn(w). Having found one preimage (as described before),
so that s = w′PT , all other preimages can be determined by finding the kernel
of PT . Because PT has to be known, by using basic linear algebra it is trivial
to compute its kernel. Once the kernel has been computed, all 22k−n preimages
can be enumerated in O(22k−n), while precomputing the kernel can be done in
negligible time and space.
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For secure sketches based on linear block codes, it is imperative to store the
hash value of the secret as well, as described by the original authors, because
preimages are trivial to be found.

However, even if the hash value is stored as well, there are exactly 22k−n

possible preimages that can be simply enumerated. Therefore, an adversary is
required to perform 22k−n evaluations of the hash function to find the correct
preimage. For every [n, k, 2t+ 1]-code, the ratio of k and n determines the capa-
bility of correcting errors, with a larger k/n resulting in more errors correctable,
but also fewer possibilities for an adversary to test. This introduces a significant
problem, as a wrong choice of an error correcting codes can result in attacks
becoming trivial, while a conservative choice of a code may provide only very
limited error correcting capabilities.

4 Secure sketch based on the DLP

A computationally secure sketch can be built on the discrete logarithm problem
(DLP). If the discrete logarithm problem is hard, the associated secure sketch
problem can be considered as hard as well. For a group G with a generator g of
order n, the discrete logarithm problem is solving for x in y = gx, with only y, g
known. With q the largest prime factor of n, any generic algorithm is bounded by
Ω(
√
q) group operations [3]. We now define Rec and SS to build a secure sketch,

which draws its security from the difficulty of computing the discrete logarithm
as follows. For a value w to be committed,

s = SS(w) = g−w. (1)

Now assume there is a function Λ solving the discrete logarithm problem, i.e.
Λ(gx) = x. Then we can define Rec as

Rec(w′, s) = w′ − Λ(gw
′
· s) = w′ − Λ(gw

′
· g−w) = w, (2)

as w′ − Λ(gw
′ · g−w) = w′ − Λ(gw

′−w) = w′ − (w′ − w) = w. Even so, there is
no generic function Λ known to efficiently compute the discrete logarithm. In
fact, if such a generic Λ existed, any arbitrary w′ could be used, resulting in an
absolutely non-secure sketch.

Thus, we define Λ to be limited to only a small subset of exponents,

Λ(gw
′
· g−w) = w′ − w iff |w′ − w| ≤ t, (3)

for t describing the error correction capabilities of the secure sketch, and t� q.
As a matter of fact, such a function Λ then can be easily provided and imple-
mented. One possibility would be a simple table–lookup of all t possible values.
Generally, any efficient algorithm for computing the discrete algorithm inside a
given range [0, t] suffices, for instance Pollard’s Kangaroo [4] or a slightly modi-
fied baby–step giant–step algorithm [5].
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The presented secure sketch is in fact secure, as it can be shown that in the
general case, finding a w′ so that Rec(w′,SS(w)) = w without knowing w is lower
bounded by O(

√
q/t), with q the largest prime factor of the order of the group

used.

5 Results

(a) Original (b) Image used to unlock (c) Recovered

Fig. 1. The original image (a) is encoded inside a secure sketch. A censored version (b)
is provided to unlock the sketch. The original image can be verified to be authentic,
beside the regions censored (c).

The initial example of the court proceeding has been implemented using the
proposed secure sketch based on the discrete logarithm problem. For this, several
image pixels are concatenated into a block and the secure sketch is computed and
stored for each such block. A modified image, for example one where the faces
of eyewitnesses have been censored, can be verified against the encoded sketch.
Regions in which the validation fails because of the censored parts can be high-
lighted. This is illustrated in figure 1. In the same fashion, if a tampered image
is provided for validation against a sketch, modified regions are clearly exposed.
This is illustrated in figure 2, where an image has been carefully manipulated
to no longer show power lines. Validation against the original immediately high-
lights those regions, without the need for revealing the original. Note that the
exact shape of the power lines remains secret as well, only the presence of mod-
ifications in these regions is indicated. All these examples are robust against a
limited amount of noise, possibly due to image compression. Furthermore, using
a more sophisticated approach where also certain image features are stored along
the sketch, it is even possible to successfully validate slightly distorted copies,
without significantly compromising the security.

6 Summary

Previous approaches towards secure sketches exhibit several problems arising
through the use of error correcting codes. We present a new concept of secure
sketches based on computational security instead of information theoretical se-
curity as previous approaches do. Specifically, the discrete logarithm problem
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(a) Original (b) Tampered (c) Reconstruction

Fig. 2. The original image (a) is encoded inside a secure sketch. When tampered version
(b) of the original, where the power lines have been removed, is used to unlock the
sketch, the differences can be visualized (c) so any modifications become apparent.
However, the authenticity of the remainder is proven.

has been facilitated to provide a novel secure sketch, which draws its hardness
from the hardness of the discrete logarithm problem. A practical implementa-
tion has been shown, where images are encoded into a secure sketch such that
degraded copies can be validated without the need to reveal the original at all.
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1 Introduction

Radio Frequency Identification (RFID) is a promising technology for automatic identification of remote
objects. For most RFID applications, security is an important or even crucial requirement. Since
most protocols for securing RFID systems proposed so far are based on the use of an on-board true
random and/or pseudorandom number generator (TRNG/PRNG), a number of solutions have been
proposed in literature for implementing TRNGs/PRNGs on RFID tags [1, 2, 6, 8, 10]. In particular,
the EPCglobal Class-1 Generation-2 (EPC C1 Gen2 in brief) standard [3] uses random numbers in
the tag identification protocol. All of the proposals for TRNGs are based on analog circuits that
sample a random physical phenomenon like thermal noise. To the best of our knowledge, only three
PRNGs have been proposed for EPC C1 Gen2 tags [2, 8, 10], among which two proposals use TRNGs
as a component and the security properties of these two PRNGs rely on the security of TRNGs.
Considering the high power consumption, large area and low throughput of TRNGs, we propose a
lightweight PRNG for low-cost EPC C1 Gen2 tags in this contribution. The basic idea of our design is
to replace the TRNG in [2, 8] by a lightweight pseudorandom sequence generator with good statistical
properties. To this end, nonlinear feedback shift registers (NFLSRs) have been fully exploited in our
design. An estimation of the hardware complexity shows that the proposed PRNG can be implemented
using around 1, 242 logic gates.

2 Description of the Proposed PRNG

The proposed PRNG is composed of two main building blocks. The first one consists of two NLFSRs of
length 17 and 18, each one generating a span-n-sequence with the optimal linear complexity, whereas
the second one includes a nonlinear feedback shift register and a WG transformation [4] module. In
our design, the binary sequence generated by the first building block is converted to the sequence over
the finite field F25 and this sequence is used to select a characteristic polynomial for the recurrence
relation in the second building block. The final output sequence is filtered by the WG transformation
and n-bit random numbers are generated by taking disjoint n-bit sequences from the final output
sequence. An overview of the proposed PRNG is illustrated in Fig. 1 and a more detailed description
is presented in the following subsections.

2.1 Building Block I: An Alternative to TRNG

The first building block contains two NLFSRs whose lengths (i.e., 17 and 18) are chosen to be coprime
in order to achieve the maximum period. The reason that the two smaller length NLFSRs are used
instead of a longer one is because it is impossible to generate shift distinct sequences from a longer
length NLFSR for different initial states. In our design, the WG transformation over F25 is used as a
nonlinear feedback function to generate span-n-sequences. For m = 5, the WG permutation is

WGP5(x) = x+ (x+ 1)5 + (x+ 1)13 + (x+ 1)19 + (x+ 1)21, x ∈ F25 ,
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and the WG transformation over F25 is given by

f(x) = Tr(WGP5(x)) = Tr(x19),

where Tr(·) : F25 7→ F2 is a trace function over F25 . The n-stage nonlinear recurrence relation is
defined as

sn+k = sk + f(xd), x = (sr1+k, sr2+k, . . . , sr5+k) ∈ F25 and si ∈ F2

for all k ≥ 0, and 0 < r1 < r2 < . . . < r5 < n are tap positions of two NLFSRs. Using the parameters
and recurrence relations in Table 1, we can generate two span-n-sequences b = {bi}i≥0 and c = {ci}i≥0

with NLFSR1 and NLFSR2, respectively. The output sequence of the first building block is denoted
by s = {si | si = bi ⊕ ci, i ≥ 0}, which is almost balanced and has the following statistical properties:
a) The period is (218 − 1)(217 − 1) ≈ 235; b) The imbalance range is 4; and c) The linear span is
217 − 2 + 218 − 2 ≈ 218.585.

Table 1. Parameters and Statistical Properties of Two NLFSRs

NLFSR Length Decimation Primitive polynomial Tap positions Period Linear

n d p(x) to generate F25 (r1, r2, r3, r4, r5) Span

NLFSR1 18 3 1 + x + x3 + x4 + x5 4, 7, 8, 10, 15 218 − 1 218 − 2

NLFSR2 17 3 1 + x + x3 + x4 + x5 4, 7, 8, 9, 12 217 − 1 217 − 2

We now generate a sequence t= {tk}k≥0 over F25 from s as follows

tk = (s5k, s5k+1, s5k+2, s5k+3, s5k+4) ∈ F25 ,∀k ≥ 0.

This sequence is used to select a characteristic polynomial for the second building block.

2.2 Building Block II: Pseudorandom Number Generator

The second building block consists of a NLFSR and a WG transformation module to filter the sequence
over the field F25 . Let the length of the NLFSR3 be l = 6 and the primitive polynomial be g(x) =
x6 + x+ γ, where γ = α15 ∈ F25 . The recurrence relation1 is defined as

ak+6 = γak + ak+1 +WGP5(ak+5) + tk, ai ∈ F25 , (1)

where t = {tk}k≥0 is the sequence over F25 that is defined in the previous subsection. Note that the
period of the sequence a = {ak}k≥0 is at least that of t. Moreover, the final output sequence of the
second building block is defined by ok = f(a5+k), for k ≥ 0.

NLFSR1

1-bit

5-bit

PRS

WG

NLFSR3

NLFSR2

Building Block I

Building Block II

WG

WG

Fig. 1. Diagram of the PRNG for EPC C1 Gen2 Tags

NLFSR1

1-bit

5-bit

PRS

WG

NLFSR3

NLFSR2

WG

WG

Fig. 2. The Key Initialization Procedure

It can be proved that the recurrence relation in Eq. (1) has a multiple-polynomial LFSR form
with the characteristic polynomial qk(x) = γ + x + φ(rk)x5 + x6, rk ∈ F25 . Moreover, one out of 25

1 The recurrence relation excluding tk is defined in [9, 7] for key initialization of the WG cipher.
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characteristic polynomials is chosen at each clock cycle and the choice of the polynomial qk(x) depends
on the sequence t. In addition, the polynomial g(x) is chosen such that among 32 characteristic
polynomials seven of them (i.e., the maximum number) are primitive. In [8], one of the eight primitive
polynomials is chosen by a decoding logic at each clock cycle. However, in our case the number of
characteristic polynomials is much more than those in [8] and the recurrence relation in Eq. (1) is
used to select a characteristic polynomial instead of a decoding logic.

2.3 System Initialization

The proposed PRNG has an internal state of 65 bits, including a 45-bit secret seed k as well as a
20-bit initial vector (IV). While the secret seed and the IV are preloaded into RFID tags at the
very beginning, the 20-bit IV is also updated at the end of each protocol session. Before generating
random numbers, a 36 rounds of initialization phase is applied to mix the key and IV properly. In our
design, the secret seed and IV are preloaded as follows: the first consecutive 11, 12 and 22 positions
of the NLFSR1, NLFSR2 and NLFSR3 are respectively reserved for key bits, whereas the remaining
positions in each NLFSR are for the IV. The initialization process is illustrated in Fig. 2. During the
initialization phase the internal states of the three NLFSRs are updated as follows:
bk+18 = bk + f(x3) + ok, x = (bk+4, bk+7, bk+8, bk+10, bk+15), k ≥ 0, ok = 0 for k = 0,
ck+17 = ck + f(y3) + ok, y = (ck+4, ck+7, ck+8, ck+9, ck+12), k ≥ 0, ok = 0 for k = 0,
sk = bk + ck, k ≥ 0,
tk = (sk, sk+1, sk+2, sk+3, sk+4), k ≥ 0,
ak+6 = ak + ak+1 +WGP5(ak+5) + tk, k ≥ 0.

3 Security Properties

We analyzed the security properties of the proposed PRNG by performing several cryptographic
statistical tests on several sets of pseudorandom sequences generated by our PRNG for different
initial states. We performed all the statistical tests that are proposed in the EPC C1 Gen2 standard
[3] as well as in the NIST standard [12], respectively.

According to the EPC C1 Gen2 standard [3], a true random or pseudorandom number generator
must satisfy the following three statistical properties:

– Probability of a single sequence: The probability that any 16-bit random sequence (RN16)
drawn from the PRNG has value j, shall be bounded by 0.8

216 < Pr(RN16 = j) < 1.25
216 , for any j.

– Probability of simultaneously identical sequences: For a tag population up to ten thousand
tags, the probability that any of two or more tags simultaneously generate the same sequence of
bits shall be less than 0.1%, regardless of when the tags are energized.

– Probability of predicting a sequence: A given sequence drawn from the PRNG 10ms after the
end of transmission shall not be predictable with a probability grater than 0.025% if the outcomes
of prior draws from PRNG, performed under identical conditions, are known.

We implemented our PRNG in software for checking whether the proposed PRNG meets the above
three criteria. To verify the first criterion, we generated 18 different test sequences for different initial
states of the NLFSRs and we calculated the probability of occurrence of 16-bit values. Our experi-
mental results show that Pr(RN16 = j) lies between 0.9628

216 and 1.0428
216 , which are better bounds than

those obtained in [8]. With respect to the second criterion, our PRNG can generate up to 245−1 shift
distinct sequences for different keys to each tag. Thus the probability that any two tags will generate
the same sequence is 2−45 that is much less than 0.1%. For the third criterion, given a 16-bit random
number, an attacker can recover the internal state of the NLFSR3 with probability 2−24 and get 80
bits of the sequence s. To obtain the next 16-bit random number from the given one, the adversary
needs to know the next consecutive 80 bits of the sequence s and the internal state of the NLFSR3.

The 80 bits can be obtained either by guessing or obtaining about 218.58

5 = 216.26 consecutive random
numbers. Due to the high linear span of the sequence s, it is impossible to generate the next consecu-
tive 80 bits from previous known 80 bits in practice. Furthermore, it is also difficult for an adversary
to intercept 216.28 consecutive random numbers in one protocol session because the communication
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session in RFID systems is usually quite short and the IV is different and the secret seed can also be
updated for different sessions. Hence, the attacker can guess the next 16-bit random number with the
better probability 2−16, which is much less than 0.025% as specified in the EPC C1 Gen2 standard.

To measure the linear dependency between each n-bit output and previous n-bit output, we per-
formed a serial correlation test on the sequences generated by the proposed PRNG. We generated 18
distinct sequences for different initial values and calculated the serial correlation coefficient for 1-bit,
1-byte and 2-byte lag. Our experimental results demonstrate that the serial correlation coefficients are
close to zero, which indicates the good pseudorandomness of the generated sequences.

Different from the statistical tests in the EPC C1 Gen2 standard, the NIST test suite contains
15 demanding statistical tests for characterizing the randomness of a binary sequence. According
to the NIST specification [12], a PRNG passes the test suite successfully if it passes all the tests
simultaneously with a proportion of 96%. In our experiment, 10 test sequence (TS) sets are generated,
each of which has 100 different sequences with different initial values and has a length of 225. We
computed the proportion values for each TS set and listed the test results3 for 5 out of 10 TS sets in
Table 2. It is not difficult to find out that each TS set can pass the NIST test suite successfully.

Table 2. NIST Test Suite results of our proposal

Tests TS1 TS2 TS3 TS4 TS5

proportion proportion proportion proportion proportion

Frequency 1.00 0.98 1.00 0.99 1.00

Block-frequency 1.00 0.99 0.98 1.00 1.00

Cumulative-sum 1.00, 1.00 0.98, 0.99 1.00, 0.99 0.99, 0.99 1.00, 1.00

Runs 1.00 0.99 0.98 0.99 1.00

Longest-run 0.99 0.98 0.98 0.99 0.99

Rank 0.99 0.98 0.99 0.99 0.99

FFT 1.00 1.00 0.98 1.00 1.00

Overlapping-templates 0.99 0.99 0.98 0.97 0.99

Universal 0.99 0.98 0.98 0.99 0.99

Approx. entropy 0.98 1.00 0.98 0.99 0.98

Serial 0.99, 0.99 0.99, 1.00 1.00, 0.99 0.97, 0.98 0.99, 0.98

Linear-complexity 0.98 0.99 1.00 0.97 0.98

Random-excursions 0.99, 0.99 0.99, 0.99 0.98, 1.00 1.00, 0.99 0.99, 0.99

1.00, 0.97 0.97, 0.99 1.00, 1.00 0.99, 1.00 1.00, 0.97

0.99, 1.00 1.00, 0.99 0.99, 0.99 0.98, 1.00 0.99, 1.00

0.99, 0.99 0.97, 0.99 0.98, 1.00 0.99, 0.99 0.99, 0.99

Random-excur-variant 0.98, 0.99, 0.99 1.00, 1.00, 1.00 1.00, 1.00, 1.00 0.99, 0.99, 0.99 0.98, 0.99, 0.99

1.00, 1.00, 0.99 1.00, 0.99, 0.99 1.00, 1.00, 1.00 1.00, 1.00, 1.00 1.00, 1.00, 0.99

0.99, 0.99, 0.99 0.99, 0.99, 1.00 1.00, 1.00, 1.00 1.00, 0.99, 1.00 0.99, 0.99, 0.99

1.00, 0.98, 1.00 1.00, 0.99, 0.99 0.99, 1.00, 1.00 0.99, 1.00, 0.99 1.00, 0.99, 1.00

1.00, 0.97, 0.99 0.99, 1.00, 1.00 1.00, 1.00, 1.00 0.99, 0.99, 0.99 1.00, 0.97, 0.99

0.99, 0.99, 0.99 1.00, 1.00, 1.00 1.00, 0.99, 0.99 1.00, 0.99, 0.99 0.99, 0.99, 0.99

4 Hardware Complexity

Besides the good randomness properties, the proposed lightweight PRNG can also meet the strin-
gent requirements of the EPC C1 Gen2 standard regarding to the hardware complexity. A PRNG
is expected to be implemented with a small number of logic gates according to the EPC C1 Gen2
standard [3] and a usual rule of thumb is that the security functionality in EPC tags costs between
2000 and 5000 logic gates [11]. A rough estimation in Table 3 shows that the proposed PRNG can be
implemented in hardware with around 1, 242 logic gates, which perfectly matches the requirements of
the EPC C1 Gen2 standard. Moreover, our PRNG has a lower hardware complexity than that in [10].
When compared to the PRNG proposed in [8], our design costs more logic gates in order to replace the
TRNG in [8]. However, if we only compare the hardware implementation cost for the pseudorandom
number generator module (i.e., the building block II in our design) in both proposals, our design only
needs 127 less logic gates than that in [8].

3 Non-overlapping template matching test results are not given in the table because of 148 entries.
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Table 3. The Hardware Complexity of the Proposed PRNG

Component Quantity Function Gate Count

LFSR18 1 Generation of a span-n-sequence b = {bi}i≥0 216

LFSR17 1 Generation of a span-n-sequence c = {ci}i≥0 204

LFSR5 1 5-bit storage of the sequence t = {tk}k≥0 60

LFSR5×6 1 Generation of a span-n-sequence a = {ak}k≥0 360

WG 1 WG transformation 133

XOR1 13 1-bit exclusive-OR operation 33

Multiplier5 1 5-bit multiplication over F25 29

Control (20%) — 207

Total — 1, 242

With respect to the time delay for generating the first 16-bit pseudorandom number, our design
totally requires 116 clock cycles, including 36 clock cycles for the initialization and 5× 16 = 80 clock
cycles for the generation of the first 16-bit random number. After that, each 16-bit random number
can be obtained every 80 clock cycles. Assuming that the EPC tags run at the clock frequency of 100
KHz and two 16-bit random numbers are needed for the tag identification protocol according to the
EPC C1 Gen2 standard, one can identify about 510 tags in one second by using our PRNG.

5 Conclusions

In this paper we propose a lightweight pseudorandom number generator in compliance to EPC Class-1
Generation-2 standard. Considering the high power-consumption, large area and low throughput of
TRNGs, we replace the TRNG used in previous works by a PRNG with good statistical properties. In
our design, the pseudorandom sequence is generated using a nonlinear feedback shift register in which
the nonlinear recurrence relation can be treated as a multiple-polynomial LFSR form. Moreover, the
statistical tests specified by the EPC C1 Gen2 and the NIST standards are employed to characterize
the security properties of the proposed PRNG. In addition, a complexity estimation shows that the
proposed PRNG can be implemented in hardware using around 1, 242 logic gates and can generate a
16-bit random number every 80 clock cycles after an initialization process of 36 clock cycles.
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Abstract. The GOST 28147-89 block cipher is a Russian standard for
encryption. We describe two attacks with 4 related keys and one attack
using 2 related keys. The complexities of the attacks depend on proper-
ties of s-boxes. For some classes s-boxes the attacks are practical.
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1 Introduction

The GOST block cipher is a Russian standard for encryption. It was stan-
dardized in 1989. All governmental organizations and some commercial
organizations have information security systems based on this standard.
In 2010 the GOST block cipher was submitted to ISO 18033, to become
a worldwide industrial encryption standard. The block cipher GOST is
based on the Feistel scheme. It has 32 rounds, 64-bit blocksize, and 256-
bit keysize and iterates a round function f composed of a key addition
modulo 232, eight bijective 4 × 4-bit s-boxes si, 1 ≤ i ≤ 8, and cyclic
rotations by 11 bits. A particularity of the GOST block cipher is that its
s-boxes can be secret and they can be used to compose a secondary key,
further extending keysize to a total of 610 bits.

The GOST block cipher has been analyzed in [1]–[9] using different
techniques. The related-key boomerang attack was proposed in [6]. Nev-
ertheless attack is incorrect; it contains basic ideas to build attacks on the
GOST block cipher. So, the attack recovering a 256-bit secret key with
18 related keys was independently developed by V. Rudskoy [7] and the
authors.

In this paper related key attacks using 2 and 4 related keys are de-
scribed. For some classes s-boxes the attacks are practical. We describe
two attacks with 4 related keys and one attack using 2 related keys. Our
attacks consist of four main steps. In the first step we obtain a set K [1]
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of 32-th round key candidates. In the second step we get a set K [2] con-
sisting of round key candidates for 27-31 rounds. For finding the set K [2]

we apply a related-key truncated-differential attack and the set K [1]. In
the third step we obtain a set K [3] of 26-th round key candidates using a
related-key differential attack and the set K [3]. In the fourth step we get
a set K [4]of 25-th round key candidates using a related-key boomerang
attack or the exhaustive method. The essential differences of our attacks
consist in step 1; the other steps are the same for all attacks. Depending
on the properties of the s-boxes the first step requires 2 or 4 related keys.

We will use the following notations: x∈UX -x is randomly chosen
from the set X; Vn is the n-dimensional vector space over GF (2); εi =
(0, ..., 0, 1, 0, ...0︸ ︷︷ ︸

i

), i = 0, 1, ...; s = (s8, ..., s1) is a nonlinear (s- boxes)

layer in the round function f ; ki is a round key of i-th round, i = 1, ..., 32;
α(j) =

(
α(j,1), α(j,2)

)
is the ciphertext after j rounds.

2 Ideas of the attacks

To attack with 2 related keys basic principles of the related-key truncated
differential attack from [KoLLK04] are used. We consider the pair of
related keys k, k′ and pairs of plaintexts α(0), α′(0) such that

k ⊕ k′ = (ε31,0, ε31,0, ε31,0, ε31,0, ε31,0), α(0) ⊕ α′(0) = (0, ε31).

We use the special technique to classify all bijective 4 × 4-bit s-boxes
with regard to the truncated-differential probabilities. This classification
allows us to describe some classes of ”strong” and ”weak”s-boxes. So, if
we use strong s-boxes than we cannot mount our attack on the GOST
block cipher but we can attack it with weak s-boxes. For weak s-boxes
the time complexity T1 and the number n1 of texts satisfy the following
inequalities T1 ≤ 249 encryptions, n1 ≤ 232 and the success probability is
0.99.

Step 2 is also based on the related-key truncated differential attack.
We use a truncated differential characteristic to find round keys k31, ..., k27.
They can only be recovered for weak s-boxes. Now we discuss two attacks
with 4 related keys. Their step 4, which recovers the round key k(32), is
based on a related-key boomerang attack and uses related keys

k ⊕ k′ = k′′ ⊕ k′′′ = (ε31,0, ε31,0, ε31,0, ε31,0, ε31,0),
k ⊕ k′′ = k′ ⊕ k′′′ = (ε0,0,0,0,0,0,0,0).

In step 1 of the first attack the related-key boomerang distinguisher
from [7] is applied to recover the round key k32. But it can easily be
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proved that such the distinguisher does not recover k32 if the s-box s8

has the linear translator ε3, i.e.

s8 (α⊕ ε3)⊕ s8 (α) = δ

for some δ ∈ V4 and all α ∈ V4. In step 1 of the second attack with
4 related keys we use another related-key boomerang distinguisher to
recover k32. This distinguisher can be applied for any set of s-boxes and
does not depend on their properties. But there exists a set of ”strong”
keys for which it is not applicable. The distinguisher is based on a related-
key reverse boomerang technique in the chosen ciphertext model as in [7].
We also use the same differential characteristics as in [7]. As input we use
pairs of ciphertexts

(
α(32,1), α(32,2)

)
,
(
α′(32,1), α′(32,2)

)
such that

α(32,2) = α′(32,2) =
j∑

i=0

εi, α
′(32,1) = α(32,1) ⊕ λj ,

where α(32,1)∈RV32, j ∈ {0, ..., 31} and λj ∈ V32. We start with j = 0 and
try to find the corresponding λj ∈ V32, so that we could get a correct
quartet for

(
α(32,1), α(32,2)

)
. If we try all λj ∈ V32, we will obtain the

correct quartet with probability 1. Analyzing active s-boxes we could
recover 27 bits of round key k32, except the first bit and the last 4 bits.
The time complexity in the worst case for keys

k =
27∑

i=1

εi ⊕
∑

j∈{1,28,29,30,31}
κjεj , κj∈R{0, 1}

can be evaluated as T (32)
3

= 4 · 232 GOST encryptions.
The third step uses the same technique as in the first step to recover

the round key k(26). We use the key pair k, k′ such that

k ⊕ k′ = (ε31,0, ε31,0, ε31,0, ε31,0, ε31,0)

to obtain a specific difference in the pair
(
α(26,1), α(26,2)

)
,
(
α′(26,1), α′(26,2)

)
.

The last step uses a related-key boomerang attack with 2 related keys
based on the first step. Note that when we apply the second attack with
we have a class of strong keys for which the used distinguishers are not
applicable.

The time complexity T2 (the number of encryptions) and the number
n2 of texts of the first attack with 4 related keys can be evaluated as
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230,63 ≤ T2 ≤ 260,92, 214 ≤ n2 ≤ 244. The time complexity T3 (the number
of encryptions) and the number n3 of texts of the second attack with 4
related keys can be evaluated as 235,63 ≤ T3 ≤ 265,92, 214 ≤ n3 ≤ 244.
For the s-boxes from [10] we have T2 = 244.79 encryptions, n2 = 226.18

plaintexts, the success probability is 0.99 but the attack with 2 related
keys is not applicable.
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1 Introduction

The cube attack, proposed by Dinur and Shamir at EUROCRYPT 2009 [1], is a generic key-
recovery attack that may be applied to any cryptosystem, provided that the adversary can obtain
a bit of information that can be represented by a low-degree decomposition multivariate polynomial
in Algebraic Normal Form (ANF) of the secret and public variables of the target cryptosystem. An
interesting feature of the cube attack is that it only requires a black-box access to a cryptosystem,
that is, the internal structure of the target cryptographic primitive is unknown. Considering the
practical implementations of cryptosystems, especially on various embedded devices, Dinur and
Shamir [2] also proposed a side channel attack model in which the attacker is assumed to have
access to some limited information leaked about the internal state of the cryptographic primitive.
In this contribution, we investigate the security of the Hummingbird-2 cipher [4] against the cube
attack under the single-bit-leakage side channel attack model. Our experimental results show that
using a single bit of the internal state during the initialization process of the Hummingbird-2 cipher
we can recover the first 48 key bits of the Hummingbird-2.

2 A Review on the Cube Attack

In the cube attack, a cryptographic primitive is viewed as a set of multivariate polynomials
p(v1, · · · , vm, k1, · · · , kn) over F2, each of them mapping m public variables vi (i.e., plaintext bits
in block ciphers and keyed hash functions or initial values in stream ciphers) and n secret variables
ki (i.e., key bits) to one of the ciphertext bits. Let I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . ,m} be a subset
of the public variable indices and tI = xi1xi2 · · ·xik be a monomial term. Then the polynomial p,
which is called a master polynomial, is decomposed as follows:

p(v1, · · · , vm, k1, · · · , kn) = tI · pS(I) + q(v1, · · · , vm, k1, · · · , kn),

where tI is called a cube that contains only a subset of public variables and pS(I) is called the
superpoly of tI in p. Note that the superpoly of I in p does not contain any common variables with
tI and each monomial in q does not contain at least one variable from I. A term tI is called a
maxterm if its superpoly in p is linear polynomial with deg(pS(I)) = 1.

The main observation of the cube attack is that the symbolic sum over F2 of all evaluations of
p by assigning all the possible combinations of 0/1 values to the public variables vi’s with i ∈ I
and fixing the value of all the remaining vi’s with i ̸∈ I is exactly pS(I), the superpoly of tI in p.
The cube attack consists of a pre-processing (offline) and an online phase. While the pre-processing
phase aims to find monomials tI ’s that lead to linear superpolys, the online phase solves the linear
equations obtained from the pre-processing phase to recover the secret key.

3 The Initialization of Hummingbird-2

Hummingbird-2 is a security enhanced version of its predecessor Hummingbird-1 [3], in response to
the cryptanalysis work in [5]. The design of Hummingbird-2 adopts the same hybrid structure of
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block cipher and stream cipher as the Hummingbird-1 with 16-bit block size, 128-bit key size, and
128-bit internal state. To launch the cube attack, we solely focus on the initialization process of the
Hummingbird-2 as shown in Fig. 1(a), where � denotes an addition modulo 216, ⊕ an exclusive-OR
operation, and ≪ (or ≫) a left (or right) circular shift operation, respectively. The initialization
process consists of four 16-bit block ciphers Eki (i = 1, 2) and eight 16-bit internal state registers

R
(t)
i (i = 1, . . . , 8 and t = 0, 1, . . .). Initially, the register R

(0)
i is set as follows:

R
(0)
i =

{
NONCEi for i = 1, 2, 3, 4
NONCEimod 4 for i = 5, 6, 7, 8

,

where NONCEi (i = 1, . . . , 4) is the i-th 16-bit nonce. The 128-bit secret key K is divided into two
64-bit subkeys k1 and k2 which are used in the four block ciphers Eki (i = 1, 2), respectively.
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(b) 16-bit Block Cipher Eki , i = 1, 2

Fig. 1. Hummingbird-2 Initialization and Building Blocks

The Hummingbird-2 initialization employs four identical block ciphers Eki(·) (i = 1, 2) in a
consecutive manner, each of which is a typical substitution-permutation (SP) network with 16-bit
block size and 64-bit key as shown in Fig. 1(b). The block cipher consists of four rounds, each of
which is comprised of a key mixing step, a substitution layer, and a permutation layer. The key
mixing step is implemented using a simple exclusive-OR operation, whereas the substitution layer is
composed of four S-boxes 4−8 of the Serpent block cipher with 4-bit inputs and 4-bit outputs. The
permutation layer in the 16-bit block cipher is given by the linear transform L : {0, 1}16 → {0, 1}16
defined as follows:

L(x) = x⊕ (x ≪ 6)⊕ (x ≪ 10),

where x = (x15, x14, . . . , x0) is a 16-bit data block. The 64-bit subkeys ki (i = 1, 2) are split into
four 16-bit round keys (see Figure 1(b)) that are used in the four rounds, respectively. The entire
initialization process consists of four rounds and after each round the eight internal state registers

are updated from R
(t)
i to R

(t+1)
i (i = 1, . . . , 8) in an unpredictable way based on their current

states as well as the outputs of the 16-bit block ciphers. For more details about the Hummingbird-2
cipher, the interested reader is referred to [4].

For applying the single-bit-leakage side channel cube attack to the Hummingbird-2 initialization
process, we assume that there is a single bit leakage after the third round of the first 16-bit block
cipher Ek1 . This enables us to recover the first 48 bits of the secret key K in the Hummingbird-2.
As an example of the attack, we provide the analysis results for the least significant bit of the
internal state after the third round of Ek1 in this contribution.

4 Linearity and Quadraticity Tests

Let Fn
2 be an n-dimensional vector space over the finite field F2 and f(x1, . . . , xn) : Fn

2 → F2 be a
Boolean function of n variables. One of the crucial steps in the cube attack is to test whether the
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Boolean function f is linear or quadratic, and if so, we need to find out the expression of f . More
specifically, we need to consider the following two cases:

– A Boolean function f is linear in its inputs if it satisfies f(x ⊕ y) = f(x) ⊕ f(y) ⊕ f(0) for
all x, y ∈ Fn

2 . Such a linear function has a form of f(x1, . . . , xn) =
⊕

1≤i≤n aixi ⊕ a0, where
ai ∈ F2 and a0 = f(0).

– A Boolean function f is quadratic in its inputs if it satisfies f(x⊕y⊕z) = f(x⊕y)⊕f(x⊕z)⊕
f(y ⊕ z)⊕ f(x)⊕ f(y)⊕ f(z)⊕ f(0) for all x, y, z ∈ Fn

2 . Such a quadratic function has a form
of f(x1, . . . , xn) =

⊕
1≤i<j≤n aijxixj ⊕

⊕
1≤i≤n aixi + a0, where aij , ai ∈ F2 and a0 = f(0).

In [6], Zhu et al. proposed an efficient term-by-term linearity test (see Algorithm 1 in Fig. 2) in
which the Boolean function f needs to be evaluated n+1+2 ·d1 ·C1 times in order to discover the
linear secret variables within a superpoly equation and test their linearity, where n is the number
of secret variables, d1 is the number of linear terms, and C1 is the total number of linearity tests.
We generalize this approach to the quadratic case and obtain a faster term-by-term quadraticity
test (see Algorithm 2 in Fig. 2). The basic idea is to first find all linear and quadratic terms in
the superpoly equation, followed by a probabilistic linearity (and/or quadraticity) test for each
individual linear (and/or quadratic) term.

Algorithm 1 Term-by-Term Linearity Test [7]
Sl ← an empty set
for i← 1 to n do

x← (0, 0, . . . , 1, . . . , 0) where only the i-th bit is 1
if f(x)⊕ f(0) = 1 then

Add i into the set Sl

end if

end for

for each j ∈ Sl do

for c← 1 to C1 do

Randomly choose an input value y ∈ F
n
2

y′ ← y

yj ← 0 and y′
j
← 1

if f(y) = f(y′) then
Reject and halt

end if

end for

end for

Algorithm 2 Term-by-Term Quadraticity Test

Sl ← an empty set
Sq ← an empty set
Execute the term-by-term linearity test (see the Algorithm 1)
for i← 1 to n− 1 do

for j ← i+ 1 to n do

x← (0, . . . , 1, . . . , 1, . . . , 0) where only the i-th and j-th bits are 1
if (f(x)⊕ f(0) = 1 and (i, j ∈ Sl or i, j 6∈ Sl)) or

(f(x)⊕ f(0) = 0 and (i ∈ Sl, j 6∈ Sl or i 6∈ Sl, j ∈ Sl))) then
Add (i, j) into the set Sq

end if

end for

end for

for each (i, j) ∈ Sq do

for c← 1 to C2 do

Randomly choose an input value y(1) ∈ F
n
2

y(2) ← y(1), y(3) ← y(1), and y(4) ← y(1)

(y
(1)

i
, y

(1)

j
)← (0, 0) and (y

(2)

i
, y

(2)

j
)← (0, 1)

(y
(3)

i
, y

(3)

j
)← (1, 0) and (y

(4)

i
, y

(4)

j
)← (1, 1)

if f(y(1))⊕ f(y(2)) = f(y(3))⊕ f(y(4)) then
Reject and halt

end if

end for

end for

Fig. 2. The Term-by-Term Linearity and Quadraticity Tests

Using the above term-by-term quadratic test, the Boolean function f needs to be totally eval-

uated (n+1+2 ·d1 ·C1)+
(

n(n−1)
2 + 4 · d2 · C2

)
times for a superpoly with d1 linear terms and d2

quadratic terms, where C1 and C2 are the number of linearity and quadraticity tests, respectively.

5 Side Channel Cube Attack on Hummingbird-2

As shown in Fig. 1(b) the 64-bit subkey k1 in the block cipher Ek1 is divided into four 16-bit round
keys Ki = (Ki,15, . . . ,Ki,0), i = 1, 2, 3, 4. At the i-th round the round key Ki is exclusive-ORed
with the internal state of the block cipher Ek1 . Hence, after the third round, the internal state of
the block cipher Ek1 contains the information about the round keys K1,K2 and K3. In order to
find the maxterms from a master polynomial associated with the least significant bit (LSB)1 of

1 The cube attack can also be applied to any other single bit of the internal state after the third round of
the block cipher Ek1 in a straightforward way.
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the internal state after the third round, we exhaustively test all possible cube sizes ranging from
1 to 16 (Recall that in the first round of the Hummingbird-2 initialization the input to the first
block cipher Ek1 is the 16-bit nonce NONCE1). Moreover, we fully exploit the power of GPU (i.e.,
a GeForce GTX 285 graphics card from NVIDIA) to significantly accelerate the evaluation of the
master polynomial by launching 2κ (κ is the size of a cube) threads simultaneously, each of which
calculates the value of the master polynomial for one of 2κ different 0/1 combinations of a subset
of public variables (vi1 , vi2 , . . . , viκ).

Table 1. The Cube Indices and the Superpoly Equations for the Hummingbird-2 Initialization from the
Least Significant Bit Leakage after the Third Round of the First Ek1

Cube Indices Cube Size Linear Superpoly Equation
{11, 10, 9, 8, 7, 6, 5, 4, 3, 2} 10 K1,0 +K1,1 + 1
{15, 14, 13, 12, 7, 6, 5, 4, 3, 0} 10 K1,1

{11, 10, 9, 8, 7, 6, 5, 4, 3, 0} 10 K1,2 + 1
{11, 10, 9, 8, 7, 6, 5, 4, 2, 0} 10 K1,3

{11, 10, 9, 8, 7, 3, 2, 1, 0} 9 K1,4

{15, 14, 13, 12, 11, 10, 9, 8, 6, 4} 10 K1,5

{15, 14, 13, 12, 4, 3, 2, 1, 0} 9 K1,5 +K1,6

{11, 10, 9, 8, 4, 3, 2, 1, 0} 9 K1,7

{15, 14, 13, 12, 10, 9, 3, 2, 1, 0} 10 K1,8

{11, 8, 7, 6, 5, 4, 3, 2, 1, 0} 10 K1,9

{15, 14, 13, 12, 9, 8, 3, 2, 1, 0} 10 K1,10

{15, 14, 13, 12, 9, 8, 7, 6, 5, 4} 10 K1,11

{14, 13, 7, 6, 5, 4, 3, 2, 1, 0} 10 K1,12

{15, 12, 7, 6, 5, 4, 3, 2, 1, 0} 10 K1,13 +K1,14

{15, 12, 11, 10, 9, 8, 7, 6, 5, 4} 10 K1,14

{15, 12, 11, 10, 9, 8, 7, 6, 5, 4} 10 K1,15 + 1
{14, 13, 12, 10, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,0 +K2,5 +K2,6 +K2,7 +K2,9 +K2,11 +K2,13

{14, 13, 12, 11, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,3 +K2,5 +K2,6 +K2,7 +K2,10 +K2,11 +K2,13 + 1
{14, 13, 12, 11, 10, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,2 +K2,3 +K2,6 +K2,7 +K2,8 +K2,10 +K2,11 +K2,13 +K2,14 +K2,15 + 1
{14, 13, 12, 11, 10, 9, 7, 6, 4, 3, 2, 1, 0} 13 K2,0 +K2,2 +K2,3 +K2,5 +K2,8 +K2,9 +K2,10 +K2,14 +K2,15

{14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 2, 1, 0} 13 K2,2 +K2,3 +K2,4 +K2,5 +K2,7 +K2,9 +K2,10 +K2,11 +K2,13 +K2,14

{14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 1, 0} 13 K2,5 +K2,8 +K2,11 +K2,14

{14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 2, 0} 13 K2,0 +K2,10 +K2,12

{15, 13, 12, 10, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,5 +K2,7 +K2,9 +K2,11 +K2,13 + 1
{15, 13, 12, 11, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,0 +K2,1 +K2,3 +K2,4 +K2,5 +K2,10 +K2,11 +K2,13

{15, 13, 12, 11, 10, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,1 +K2,2 +K2,3 +K2,4 +K2,6 +K2,8 +K2,10 +K2,11 +K2,13 +K2,14 +K2,15

{15, 13, 12, 11, 10, 9, 7, 6, 4, 3, 2, 1, 0} 13 K2,1 +K2,2 +K2,3 +K2,4 +K2,5 +K2,6 +K2,8 +K2,9 +K2,10 +K2,14 +K2,15

{15, 13, 12, 11, 10, 9, 8, 7, 6, 4, 2, 1, 0} 13 K2,1 +K2,2 +K2,3 +K2,4 +K2,5 +K2,10 +K2,12 +K2,13 +K2,14 +K2,15 + 1
{15, 13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 1, 0} 13 K2,1 +K2,2 +K2,5 +K2,6 +K2,7 +K2,9 +K2,12 +K2,14 +K2,15 + 1
{15, 13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 2, 0} 13 K2,0 +K2,3 +K2,5 +K2,6 +K2,9 +K2,10 +K2,11 + 1
{15, 14, 12, 11, 9, 8, 7, 6, 4, 3, 2, 1, 0} 13 K2,0 +K2,1 +K2,3 +K2,4 +K2,6 +K2,7 +K2,9

{15, 14, 12, 11, 10, 9, 8, 7, 6, 4, 2, 1, 0} 13 K2,1 +K2,2 +K2,3 +K2,8 +K2,11 +K2,13 +K2,15

After running the faster term-by-term quadratic test (see the Algorithm 2 in Section 4) on a
single PC (with a GPU) for a few days, we have been able to find tens of linear and quadratic
superpoly equations using different cube sizes. For the linear superpolys, we use the Gaussian
elimination to remove the linear dependent equations and obtain 32 linear independent equations
with 32 key variables as a result. Table 1 lists the indices of the public variables in the maxterms
and the corresponding linear superpoly equations. For the quadratic superpolys, we find that they
are all redundant and cannot provide more information about the secret key bits. As shown in
Table 1, we have 3 maxterms of size 9, 13 maxterms of size 10, and 16 maxterms of size 13.
Therefore, in order to recover the first 32 key bits of the secret key, the total number of chosen
plaintexts (i.e., the nonce NONCE1) at the online phase of the cube attack is 3× 29 + 13× 210 +
16 × 213 ≈ 217.155. After obtaining the first 32 key bits K1 and K2, we can use those key bits
to significantly simplify the master polynomial associated with the LSB of the internal state of
the block cipher Ek1 after the third round. As an example, we assume that K1 = 0x35df and
K2 = 0xac2b. Using the Algorithm 2, we find 12 linear independent equations (see Table 2) with
12 secret key variables K3,4,K3,5, . . . ,K3,15, which enable us to solve those key variables at the
online phase with 24+2×25+6×26+3×27 ≈ 29.755 chosen plaintexts. The remaining four secret
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key bits K3,0,K3,1,K3,2 and K3,3 can be obtained by conducting an exhaustive search. Moreover,
one can also obtain the relations among those four key bits by solving the quadratic equations in
Table 2 with another 2 × 25 = 64 chosen plaintexts. Consequently, the total time complexity to
find the correct 128-bit secret key of the Hummingbird-2 has been reduced to O(280).

Table 2. The Cube Indices and the Superpoly Equations for the Hummingbird-2 Initialization from the
Least Significant Bit Leakage after the Third Round of the First Ek1 (K1 and K2 are known)

Cube Indices Cube Size Superpoly Equation
{7, 6, 5, 4} 4 K3,4 +K3,6 +K3,7 +K3,8 +K3,10 +K3,11 +K3,12 +K3,14 +K3,15 + 1
{7, 6, 5, 4, 0} 5 K3,4 + 1
{12, 10, 7, 4, 0} 5 K3,12 + 1
{11, 9, 5, 4, 3, 0} 6 K3,10

{11, 10, 9, 8, 6, 4} 6 K3,13

{7, 6, 5, 4, 3, 0} 6 K3,6 +K3,7 +K3,12

{6, 4, 3, 2, 1, 0} 6 K3,4 +K3,9 +K3,10 +K3,11 + 1
{11, 10, 9, 6, 4, 0} 6 K3,4 +K3,5 +K3,8 +K3,10 +K3,15 + 1
{9, 8, 3, 2, 1, 0} 6 K3,5 +K3,7 +K3,8 +K3,11 +K3,14 +K3,15 + 1
{8, 6, 5, 3, 2, 1, 0} 7 K3,6 +K3,7 +K3,8 +K3,9

{8, 7, 6, 3, 2, 1, 0} 7 K3,6 +K3,7 +K3,8 +K3,10 +K3,11 + 1
{8, 7, 6, 5, 4, 2, 1} 7 K3,5 +K3,6 +K3,8 +K3,9 +K3,10 +K3,13 +K3,14 +K3,15

{10, 8, 7, 6, 4} 5 K3,7 +K3,8 +K3,9 +K3,11 +K3,12 +K3,13 +K3,14 +K3,8K3,11 +K3,9K3,11 +K3,4K3,5 +K3,5K3,6 +K3,2K3,3

{9, 8, 6, 5, 2} 5 K3,4 +K3,7 +K3,9 +K3,10 +K3,12 +K3,9K3,11 +K3,10K3,11 +K3,5K3,7 +K3,4K3,5 +K3,1K3,2 +K3,0K3,2

6 Conclusions

In this contribution we investigate the security of the Hummingbird-2 against the side channel cube
attacks under the single-bit-leakage model. Our experimental results show that one can recover the
first 48 bits of the secret key in the Hummingbird-2, by taking advantage of a single bit informa-
tion leakage from the internal state after the third round of the first block cipher Ek1 . The data
complexity of the proposed attack is around 218. Moreover, an efficient term-by-term quadratic
test is also proposed. Finally, we would like to point out that in order to launch the side channel
cube attack against the Hummingbird-2 an attacker needs to acquire the exact value of the least
significant bit after the third round of the block cipher Ek1 , which is, if not impossible, quite dif-
ficult and expensive in practice according to the current manufacturing technology of embedded
systems. Therefore, the proposed attack is only of a theoretical interest at the moment and does
not directly jeopardize the security of the Hummingbird-2 implementations in practice.
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