
Volumetric Avatar Reconstruction with Spatio-Temporally Offset RGBD
Cameras

Gareth Rendle* Adrian Kreskowski† Bernd Froehlich‡

Virtual Reality and Visualization, Bauhaus-Universität Weimar, Germany

(a) (b) (c) (d)

Figure 1: We propose a volumetric avatar capture technique that can increase the effective capture frame rate of a set of RGBD
cameras from 30 Hz to 60 Hz. In our configuration, cameras are assigned to one of two spatio-temporally offset capture groups,
group A (red triangles) and group B (blue triangles). The surfaces reconstructed from each group exhibit different artefacts, as shown
in images (a) and (b). We also propose a reconstruction pipeline that consumes images from alternating capture groups, leveraging
temporal volumetric fusion to blend surfaces from previous frames into the current reconstruction frame, mitigating temporal artefacts
(c). Colors from previous frames are also blended into the texture applied to the geometry (d).

ABSTRACT

RGBD cameras can capture users and their actions in the real world
for reconstruction of photo-realistic volumetric avatars that allow
rich interaction between spatially distributed telepresence parties in
virtual environments. In this paper, we present and evaluate a system
design that enables volumetric avatar reconstruction at increased
frame rates. We demonstrate that we can overcome the limited cap-
turing frame rate of commodity RGBD cameras such as the Azure
Kinect by dividing a set of cameras into two spatio-temporally offset
reconstruction groups and implementing a real-time reconstruction
pipeline to fuse the temporally offset RGBD image streams. Compar-
isons of our proposed system against capture configurations possible
with the same number of RGBD cameras indicate that it is benefi-
cial to use a combination of spatially and temporally offset RGBD
cameras, allowing increased reconstruction frame rates and scene
coverage while producing temporally consistent volumetric avatars.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities

1 INTRODUCTION

In social virtual reality applications, the nature of users’ visual
representations can affect the level of social presence [6, 49, 50]
and co-presence [2, 23, 50] experienced by users, as well as the
quality of social interactions [40] and the trust that users feel towards
communication partners [2, 26]. Steed and Schroeder [42] highlight
the difference between tracked avatars, like those animated from

*e-mail: gareth.rendle@uni-weimar.de
†e-mail: adrian.kreskowski@uni-weimar.de
‡e-mail: bernd.froehlich@uni-weimar.de

tracked headset and controller positions commonly used in current
social virtual reality platforms12, and reconstructed avatars, where
an accurate representation of the user is reconstructed in real time.
Reconstructed avatars, also referred to as volumetric avatars, can
facilitate rich communication between collaborators by conveying
facial expressions and accurate full-body movements. In application
areas where interpersonal communication is paramount, such as
in immersive telepresence scenarios, systems are required that can
reconstruct and transmit avatars with high-resolution geometry and
textures in real-time.

Consequently, real-time reconstruction of volumetric avatars has
been an active field of research in recent years, producing methods
that reconstruct detailed geometry at high frame rates from images
captured by custom depth sensors [10, 11, 38]. A parallel research
thread, initiated by the introduction of consumer-level RGBD cam-
eras such as the Microsoft Kinect, focuses on reconstructing avatar
streams with commercially available sensors [1, 4, 32–34]. Com-
modity RGBD cameras typically have a lower frame rate than the
cameras used in the state-of-the-art methods. For example, Mi-
crosoft’s latest RGBD camera, the Azure Kinect3, has a maximum
frame rate of 30 Hz, compared to the frame rate of 200 Hz achieved
by the custom depth sensor used in the Motion2Fusion system [10].
Lower capture frame rates mean that reconstructed motion appears
less smooth than that produced by state-of-the-art methods. Re-
constructing volumetric avatar streams with a high frame rate is
of particular interest in virtual reality applications, where display
refresh rates are typically 60 Hz or higher, and rendering moving
visual stimuli at a significantly lower frame rate than the display’s
refresh rate leads to unpleasant judder effects [8, 41].

The work presented in this paper aims to enable reconstruction
of volumetric avatar streams at high frame rates with commodity
RGBD cameras. We propose a capture configuration and reconstruc-

1oculus.com/workrooms
2vrchat.com
3azure.microsoft.com/services/kinect-dk

tion pipeline that produces avatar streams with twice the maximum
capture frame rate of the employed RGBD camera model, while
maintaining scene coverage and temporal consistency. Our cap-
ture configuration is guided by two observations relating to avatar
reconstruction with multiple RGBD cameras. Firstly, we observe
that by spatially distributing cameras around the capture subject,
greater scene coverage can be achieved, reducing holes and inac-
curacies caused when parts of the surface are occluded or poorly
observed. This observation in itself is not novel and is commonly
seen in camera configurations that produce 360-degree avatar re-
constructions [10, 11, 38, 45, 52]. Our second observation is that by
temporally offsetting some of the available cameras by half of the
interval between capture frames, the effective capture frame rate of
a set of cameras can be increased to twice the capture frame rate of
a set of temporally aligned cameras. We combine these observations
to create a spatio-temporally offset capture configuration, where
cameras are assigned to one of two groups that are spatially and tem-
porally offset from each other, as shown in Figure 2. The temporal
offset means that the two capture groups provide color and depth
images to the reconstruction pipeline in an alternating manner. If
surfaces reconstructed from different capture groups were rendered
at consecutive frames, disturbing flickering artefacts would occur,
as reconstructions from different groups are likely to exhibit view-
dependent differences. We therefore take inspiration from existing
temporal volumetric fusion methods [11, 36] by blending surface
contributions from previous frames into the current frame, producing
a temporally consistent volumetric avatar stream.

The contributions described in this work are:

• a novel volumetric avatar capturing configuration that, as
shown through evaluation, increases the effective capture frame
rate and scene coverage;

• a real-time reconstruction pipeline for use with the intro-
duced capture configuration, which leverages a temporal fusion
approach to produce temporally consistent avatar geometry
streams;

• a method for spatio-temporal blending of color contributions
from each camera to maintain temporally consistent texturing
of the volumetric avatar.

We evaluated our approach with two groups of four Microsoft
Azure Kinect cameras. Our approach effectively doubles the frame
rate of the volumetric avatar reconstruction from 30 to 60 Hz and
delivers smoothly moving and consistent volumetric avatar streams.

2 RELATED WORK

Research contributions addressing reconstruction of volumetric
avatars can be categorized into offline and real-time approaches.
Offline methods target playback of so-called Free-Viewpoint Video
after reconstruction [7, 18, 35, 39], and are therefore unsuitable for
telepresence applications, for which avatar reconstruction must be
achieved in real-time to support interactivity between users.

One class of real-time techniques fits scanned template geometry
or human priors to RGBD input [46], and includes contributions that
are able to reconstruct complete avatar geometry from monocular
input [5,19,21,22,30,48,51,53,54]. Although reducing the number
of capture cameras is desirable, these methods do not generalize to
scene topology changes, such as the spontaneous use of props.

Real-time template-free methods achieve smooth reconstruction
quality by leveraging temporal volumetric fusion to blend surface
geometry observed in previous frames with that of the current
frame [10, 11, 20, 24, 36, 38]. A prerequisite of temporal fusion
is knowledge of the deformation undergone by the reconstructed
surface between frames. Deformation estimation is typically framed
as an energy minimization problem, within which the parameters of
a non-rigid deformation field are found that minimize energy terms

quantifying poor alignment between the deformed and target sur-
face, and undesirable types of deformation, namely non-regular and
non-rigid deformation [43]. Successful deformation approaches are
often guided by point-to-point correspondences between the source
and target geometry, such as those obtained from SIFT features [24].
Correspondence identification has been accelerated by matching
RGB image patches using decision forests [11], or approximating
the transformation of a mesh into the spectral domain where corre-
spondences can be more efficiently identified [10]. Guo et al. [20]
use the intrinsic appearance of the avatar to estimate motion, in a
joint approach that estimates motion and albedo simultaneously.

The state-of-the-art approach to real-time volumetric avatar re-
construction, by Dou et al. [10], employs active IR stereo depth
sensors that can achieve a frame rate of 200 FPS and a depth map
resolution of 1280×1024 pixels [14]. However, since the hardware
proposed in the aforementioned work is not widely available, many
approaches focus instead on reconstructing 3D scenes using com-
modity RGBD sensors. The release of the Microsoft Kinect sensor
motivated research into methods that could create smooth, complete
reconstructions of 3D scenes using commercially available sen-
sors [37], and subsequently yielded approaches for reconstructing
dynamic scenes [36], although reconstruction was prone to failure
when large inter-frame motions were present. Reconstruction ap-
proaches that only require a single commodity RGBD sensor as
input are cost effective, but either rely on human priors [5, 30, 53] or
suffer from occlusion issues inherent when viewing a scene from a
single perspective [15, 20, 27].

Reconstruction methods that use multiple commodity RGBD
cameras construct more complete scene geometry than single-
camera methods by fusing point clouds obtained from multiple
perspectives. Approaches used to combine surfaces observed from
different cameras include overlaying or zippering multiple trian-
gle meshes [4, 32, 33], fitting local surfaces using moving least
squares [34], and integrating depth observations into a volume [1]
that implicitly encodes the surface as a Truncated Signed Distance
Function (TSDF) [9]. More recent methods developed for multi-
ple commodity RGBD cameras typically use human priors [54],
or are heavily assisted by learning-based geometry and texture in-
ference [44, 52]. The acquisition and preparation of training data
required to make use of these techniques is a barrier for some users,
and training reconstruction pipelines with data from scenes con-
taining only human actors can make reconstruction methods less
generalizable to telepresence scenarios involving props.

The referenced approaches to avatar reconstruction with multiple
commodity RGBD cameras cannot achieve the frame rates possible
in the state-of-the-art real-time volumetric avatar reconstruction
methods due to the limitations of the RGBD cameras themselves:
the Azure Kinect, for example, has a maximum capture frame rate of
30 FPS. In this work, we address this limitation by proposing a novel
capture configuration and reconstruction pipeline that increases the
frame rate of the reconstructed volumetric avatar stream from 30 Hz
to 60 Hz when using the Azure Kinect.

3 SYSTEM DESCRIPTION

We propose a novel approach to reconstructing real-time volumetric
avatars with commodity RGBD cameras. The core idea of our
approach is the conceptual separation of a set of synchronizable
RGBD cameras into two groups, which we refer to as capture groups.
By temporally offsetting the center of exposure of one group by half
of the time interval between camera frames at maximum capture
frame rate, the capture groups provide sets of color and depth images
to the reconstruction pipeline in an alternating manner at double
the maximum capture frame rate of an individual sensor. Instead
of spatially aligning pairs of cameras from different capture groups,
all cameras are distributed evenly around the capture volume to
achieve high scene coverage, reducing occlusions in complex scenes.

Capture
Volume

RGBD camera,
capture group A

RGBD camera,
capture group B

time

C
am

er
a

ID

0

1

2

3

4

56

7

Figure 2: RGBD camera positioning and conceptual grouping used
in our proposed avatar reconstruction system is shown on the left.
Cameras are divided into two capture groups that provide images to
a reconstruction server in an alternating manner. The image on the
right represents the images captured from each group as yellow and
blue squares respectively, and illustrates the temporal offset between
the centers of exposure of cameras in each group. Cameras within a
group are slightly offset to avoid interference (see Section 3.1.2)

.

Since the volumetric avatar is reconstructed from alternating sets of
views at every reconstruction frame, the resulting geometry is likely
to exhibit flickering as view-dependent artifacts repeatedly appear
and disappear. To mitigate such artifacts and maintain temporal
consistency, geometry and color information computed in previous
frames is fused into the current reconstruction frame.

In Section 3.1, we detail the hardware and software configuration
used to capture RGBD images for our avatar reconstruction system.
In Section 3.2, our reconstruction pipeline is described.

Preliminaries. We denote the number of available RGBD cam-
eras as N. The cameras are assigned to one of two capture groups,
A and B, each consisting of N

2 cameras. While the proposed ap-
proach is suitable for any even number of cameras N > 1, we use
N = 8 to enable each group of four cameras to provide 360-degree
coverage of the capture volume, as shown in Figure 2. Cameras
are arranged such that neighboring cameras belong to different cap-
ture groups. The capture configuration used for the evaluation of
our approach employs eight Azure Kinect units. Although we re-
fer to some specific features of the Azure Kinect in our text, our
approach is applicable to any set of RGBD cameras that support
synchronization.

3.1 RGBD Image Capture
This section describes how the available RGBD cameras should be
arranged and configured to capture depth and color images for our
volumetric avatar reconstruction pipeline.

3.1.1 Calibration and Registration
We use the factory intrinsic parameters for the color and depth
sensors, as well as the factory extrinsic parameters encoding the
rigid transformation between the color and depth coordinate systems.
To register the cameras into a shared coordinate system, we employ a
tracked checkerboard, as described by Beck et al. [3], which enables
calculation of the world space positions of the checkerboard pattern’s
corners. Corresponding positions in depth sensor space are obtained
by locating 2D corner points in the infrared image captured by the
depth sensor, and back-projecting those points into 3D using the
depth sensor’s intrinsic parameters. For the registration of each
camera, we obtain depth and world space points at 8 checkerboard

positions inside the capture volume. A least-squares estimation of
transformation parameters between the depth and world space points
then provides the extrinsic parameters for each depth sensor.

3.1.2 Synchronization
In order to temporally offset one capture group from the other, it
is necessary to instruct one capture group to capture with a fixed
delay with respect to the other group. This is possible with the
Azure Kinect, which supports programmatic configuration of the
synchronization between cameras. One camera is chosen as the
master that provides a synchronization signal to subordinate cameras.
In general multi-Kinect configurations, cameras should operate with
160 µs offsets between their respective centers of exposure, to avoid
interference between cameras4. In addition to offsetting the center of
exposure of each camera by multiples of 160 µs, we delay captures
from cameras in capture group B by 16667 µs, which corresponds to
half the time interval between frames at 30 FPS capture frame rate,
the maximum supported by Azure Kinect cameras. The resulting
synchronization offsets for all cameras are shown in Table 1.

Camera Group Role Delay w.r.t. master
0 A Master 0 µs
1 A Subordinate 160 µs
2 A Subordinate 320 µs
3 A Subordinate 480 µs
4 B Subordinate 16667 µs
5 B Subordinate 16827 µs
6 B Subordinate 16987 µs
7 B Subordinate 17147 µs

Table 1: Synchronization parameters used in our spatio-temporally
offset capture configuration for eight cameras.

3.1.3 Capture Server
We implement a capture server that configures the available Kinect
cameras according to the synchronization parameters shown in Table
1. The server runs two asynchronous processes: one retrieves depth
and color images from cameras in alternating capture groups, and
one transmits image data to a local or remote reconstruction server.

3.2 Volumetric Avatar Reconstruction
Our approach is dependent on a reconstruction pipeline that can
consume color and depth images from alternating capture groups
and produce temporally consistent volumetric avatars. The recon-
struction pipeline consists of several sequential processing stages,
shown in Figure 3. In this section, we give an overview of the stages,
before describing them in detail in Sections 3.2.2 to 3.2.5.

3.2.1 Reconstruction Pipeline Overview
The reconstruction pipeline is executed once per reconstruction
frame, with the current reconstruction frame denoted as tr. The input
to the pipeline is a set of color and depth images captured at tr.

In the first stage of the pipeline, the depth images are processed
to remove redundant data and counteract noise, producing a set of
filtered depth maps. This stage also generates auxiliary textures
including filled silhouette and visual hull textures that are necessary
for fusion of surfaces reconstructed from different capture groups.

Next, a surface representing the current frame is calculated by in-
tegrating the filtered depth images into a Truncated Signed Distance
Field (TSDF), henceforth referred to as the data volume.

In order to create a temporally consistent volumetric avatar stream,
our pipeline blends surface information from previous frames into
the data volume. To allow corresponding parts of the current and

4docs.microsoft.com/azure/kinect-dk/multi-camera-sync

Texture
Processing

TSDF
Integration

Deformation
Field

Estimation

Volume
Warping

Volume
Fusion

Visualization

Raw Depth
Maps

Filtered Depth, Quality,
Normal, Silhouette &

Visual Hull Maps

Data Volume Deformation Field Warped Volume Fused Volume

Filtered Depth &
Quality Maps

Filtered Depth
Maps &

Key Volume

Silhouette & Visual Hull
Maps; Deformation Field

& Key Volume

Color Maps;
Fused Volume &

Deformation Field
Warped & Data

Volumes

Rendered Avatar

Figure 3: Overview of our volumetric avatar reconstruction pipeline as described in Section 3.2.1.

previous surfaces to be blended, it is necessary to estimate the sur-
face deformation that occurred between frames tr−1 and tr. We
adopt concepts from the work by Dou et al. [11] to estimate the
deformation field, deform the surface reconstructed at the previous
frame, and fuse the deformed surface into the data volume.

The deformation field estimation stage constructs an optimization
problem to calculate a deformation field consisting of a sparse set of
transformations that warp the surface reconstructed at tr−1 (stored
in the key volume) to align with the filtered depth images from tr.

The resulting deformation field is then used to deform (or “warp”)
the surface represented by the key volume, producing a surface that
should align with the surface in the data volume, referred to as the
warped volume. During this stage, misaligned surfaces are detected
and excluded from integration into the warped volume using the
auxiliary maps generated in the texture processing stage.

After the warped volume has been created, the warped and data
volumes are fused together to produce the final reconstructed surface.

Finally, color texture is applied to the reconstructed surface. To
ensure that the color is also temporally consistent, we propose a
texturing approach that blends contributions from color images cap-
tured at frames tr−1 and tr. To allow the correct parts of the texture
from the respective frames to be blended, the deformation field is
used to find the corresponding points in tr−1 and tr.

3.2.2 Texture Processing
The first stage of the pipeline is a texture processing stage that ap-
plies cleaning and filtering operations to the incoming depth images
captured at the reconstruction frame tr, as well as creating a number
of auxiliary maps that are required in subsequent pipeline stages.

The background is removed from the depth images by excluding
depth observations that are unprojected to positions outside of a fixed
bounding box. Since depth images are known to exhibit random
depth error with approximately Guassian distribution [29], a bilateral
filter is used to smooth surfaces in the depth images. Normal maps
are generated by estimating per-pixel normal vectors using the cen-
tral differences method. Per-pixel quality maps are then calculated
as shown by Alexiadis et al. [1], with values that are based on the
angle between the viewing direction and the surface normal, and the
the world-space distance between a pixel and its neighbors.

We introduce two additional texture maps, the refined silhouette
and visual hull textures, that aid fusion of surfaces observed from
different capture groups by excluding misaligned surfaces from the
warped volume during the volume warping stage.

(a) (b) (c) (d)

Figure 4: Refined silhouette and visual hull images are created in
the texture processing stage. The raw depth map (a) exhibits holes
around the arms. Computing a silhouette directly from the depth
image would therefore be incorrect (b). By rendering points created
by unprojecting depth observations from the other depth images from
the same time frame tr and applying a closing operation, as described
in Section 3.2.2, a refined silhouette without large holes is created (c).
A visual hull texture is created for a depth image (a) by inverting the
filled silhouette (b) and successively applying a kernel that creates
borders with increasing value around pixels with a value below 1,
leading to a stepped gradient (d, see Section 3.2.2).

A simple binary silhouette texture could be created by classify-
ing pixels with a valid depth observation as part of the silhouette.
However, depth images may exhibit holes where surfaces are poorly
observed due to motion, viewing angle, or material properties. If
those holes propagate to the silhouette texture, the alignment check
may incorrectly treat some parts of the warped surface as misaligned,
meaning that those surfaces will not be fused into the final result,
and that the resulting avatar stream will be less temporally consistent.
To avoid this issue, a refined silhouette is created. Firstly, an initial
base silhouette is created by classifying pixels with valid depth as
part of the silhouette. A point cloud is then generated from the other
depth images captured at the same frame, by unprojecting depth
observations into world space. This point cloud is subsequently ren-
dered on top of the base silhouette, with pixels that the point cloud is
projected to becoming part of the silhouette. Finally, morphological
closing is applied to the silhouette, with a dilation kernel of size 5×5
pixels, and an erosion kernel of size 3×3. This process has the effect

of closing erroneous holes in the silhouette, as shown in Figure
4. The asymmetry between the dilation and erosion kernel sizes
means that the silhouette is expanded. In the volume warping and
fusion stages, the expanded silhouette allows TSDF voxels outside
the surface to be fused into the final result (Section 3.2.5).

The refined silhouette texture addresses the holes in depth images
that can be observed when employing commodity RGBD cameras.
Depth cameras may have relatively long exposure times, meaning
that depth in areas of movement cannot be reliably estimated. Such
issues are less likely to occur when obtaining depth information
from custom stereo camera pairs [11] or from sensors with a higher
frame rate [10]. Our approach is therefore a novel contribution in
the context of reconstruction with commodity RGBD cameras.

Visual hull textures are required to assess the alignment of the
warped implicit surface in the TSDF warping and fusion stages (see
Section 3.2.5). In the visual hull texture, pixels inside the silhouette
are assigned a value of 0, while pixels far outside the silhouette are
assigned a value of 1. Pixels close to the silhouette receive a value
in range [0,1], where pixels further from the silhouette receive a
higher value. The visual hull textures are created from the refined
silhouette textures. First, an inverted copy of the silhouette is created
with pixels inside the silhouette being assigned value 0. Then, the
inverted silhouette is expanded by successive applications of a kernel
that creates a border around any pixels with value below 1. Each
application of the kernel adds a border with higher pixel values than
the last, yielding a stepped gradient from 0 to 1 as pixels further
from the silhouette are encountered. An example of a visual hull
texture is shown in Figure 4.

3.2.3 TSDF Integration

The filtered depth images from the reconstruction frame tr are inte-
grated into a volume as a TSDF, following the method introduced
by Curless and Levoy [9]. Voxels are projected into depth image
space of each sensor, enabling mapping of the 3D voxel position x
to 2D depth image coordinates Π(x). The depth values at Π(x) in
each depth map are weighted and combined using the quality values
at the corresponding positions. The resulting volume is comprised
of voxels carrying value pairs (d,w), where d is the distance from
the center of the voxel to the nearest surface, clamped such that
Dmin < d < Dmax, and w is a weight quantifying the quality of depth
observations used to calculate the distance d.

To avoid calculating signed distances for voxels in empty space,
we calculate the occupancy of the volume in a brick-wise manner.
The volume is subdivided into bricks consisting of 10×10×10 voxels.
A conservative brick-wise occupancy of the volume is calculated
during the texture processing pass by classifying any bricks within a
fixed distance of a valid depth observation as occupied. We compute
a signed distance only for voxels in occupied bricks.

3.2.4 Deformation Field Estimation

This component estimates a deformation field that corresponds to
the motion that occurred between the frame tr−1 and the frame tr. A
correct deformation field enables non-rigid deformation, or warping,
of the implicit surface encoded in the key volume to align with that
encoded by the data volume, meaning that surfaces from the key
volume can be fused into the data volume.

We note that there are many deformation field estimation ap-
proaches described in the related literature, and that the challenge of
detecting a dense deformation field in real time is still not completely
solved. We also note that our proposed reconstruction pipeline is
not dependent on any specific deformation field estimation approach.
Any implementation that can estimate deformation at a frame rate
of at least 60 Hz would be suitable for use in our pipeline. As the
aim of this work is not to develop an improved deformation esti-
mation method, we implement deformation field estimation based
on the Embedded Deformation (ED) paradigm [43] that underpins

motion estimation in two influential recent works: Fusion4D [11]
and Motion2Fusion [10]. We summarize our implementation of the
ED paradigm in the following paragraph.

The ED paradigm parametrizes the deformation field by defining
rotation R ∈R3×3 and translation t ∈R3 at a sparse set of ED nodes
on the deforming surface. ED node positions are obtained from the
key volume with a variant of the Marching Cubes algorithm [31]
that produces one vertex from each volume cell that contains an iso-
surface. The volume resolution is adjusted to obtain approximately
2k ED nodes for one volumetric avatar. The ED paradigm estimates
deformation by defining and evaluating energy terms. Regulariza-
tion terms penalize undesirable types of deformation, and data terms
penalize deformation that does not align the input surface with the
target surface. The sum of the energy terms serves as a cost function
when optimizing for rotation and translation parameters. Following
recent implementations of Sumner et al.’s framework [11, 12], we
employ two regularization terms, evaluated at each ED node: one
to encourage R to be a rotation matrix instead of an affine transfor-
mation, and one to encourage neighboring ED nodes to have similar
transformations. We also use a point-to-plane projective correspon-
dence data term that penalizes misalignments between the deformed
surface and the depth images observed at tr [11, 24].

Initialization of ED node Translations. A key challenge when
estimating the deformation field is tracking large inter-frame motions
caused by fast movement. Other approaches make use of strong
point-to-point correspondences, such as robust matches between
keypoints in color images [11, 24], to provide an initial estimate of
each ED node’s transformation parameters, which are subsequently
refined. Our approach differs, in that it leverages the body tracking
functionality provided by the Azure Kinect Body Tracking SDK
(BTSDK)5, which provides reliable tracking of fast movements and
has been used to animate rigged avatars in previous works [16, 50].
We obtain a body pose from one camera, and calculate the change in
rotation and translation since frame tr−1 for each joint. We initialize
ED node translations from joint motions by mapping ED nodes to
their closest joint Jc in frame tr−1. The inter-frame rotation of Jc
around its parent Jp is combined with the inter-frame translation of
Jp to calculate the ED node’s initial translation.

The BTSDK runs on the capture server, which transmits pose data
to the reconstruction server along with the color and depth images.
Since the BTSDK requires ∼30 ms to produce a pose estimation for
one image, we calculate a pose using one camera from group A, and
derive poses for group B’s frames through linear interpolation.

We note that the use of the BTSDK restricts our deformation
field estimation implementation in some respects. The implemen-
tation is limited to RGBD cameras that support pose estimation,
and the interpolation approach means that ED node initialization
may be incorrect for frames captured by group B if the movement
direction changes suddenly. Furthermore, ED nodes belonging to
non-avatar surfaces may not be correctly initialized, although small
deformations can be recovered by the optimization process. While
other approaches to ED node initialization [10, 11] are likely to be
more effective, the use of the BTSDK suffices to demonstrate the
spatio-temporally offset capture approach.

Non-Linear Optimization. Recent reconstruction approaches
have shown that the energy minimization problem formed in the ED
paradigm can be solved iteratively using the Levenberg-Marquardt
(LM) algorithm [10–12]. We follow this approach, allowing up to 5
iterations of the LM solver per frame. The linear solve to determine
the parameter step within each LM iteration is executed using a
Preconditioned Conjugate Gradient (PCG) solver, which runs for 10
iterations per LM iteration.

5docs.microsoft.com/azure/kinect-dk/body-sdk-setup

3.2.5 TSDF Warping and Fusion
Given a deformation field that approximates the motion between
frames tr and tr−1, the surface implicitly encoded in the key volume
can be warped to align with the data volume. The result of the
warping stage is a TSDF volume referred to as the warped volume.
We perform TSDF volume warping and fusion in a similar manner
to Dou et. al [11], and give a summary of the similar parts of the
warping and fusion stages in the following paragraph.

For each voxel in the key volume with signed distance |d|< Dmax
and position x, a warped position x̃ is calculated by taking a weighted
average of transformations from the nearest ED nodes. Each warped
voxel is added to the warped volume by integrating signed distance
values into the eight closest voxels to x̃. The distance integrated
into each voxel is not d, but is a corrected distance based on the
voxel’s gradient, to account for cases when x̃ does not lie in the
center of a voxel. Warped voxels are checked for misalignment
before being integrated into the warped volume. A misalignment
error is calculated for each warped voxel, by determining how far x̃
lies outside the visual hull of the surface observed at frame tr, and
only those with error below a fixed threshold are integrated. After
the warped stage, voxels from the warped volume with |d|< Dmax
are fused into the data volume by calculating a weighted average of
d from corresponding voxels in each volume.

Our misalignment error calculation approach differs from the ref-
erence [11]. In order to create temporally consistent reconstructions,
any holes in the surface reconstructed from one capture group must
be filled by the surface from the other. Holes can only be filled when
voxels on either side of the surface are integrated into the volume,
creating a zero-crossing. Therefore, some voxels that lie just outside
of the surface must be fused into the volume, which we allow by
using dilated silhouette and visual hull textures. Voxels which may
otherwise have been given a high misalignment error and excluded
from the data volume instead receive a low error if they are just out-
side the surface. While the referenced warping implementation [11]
calculates misalignment from a 3D visual hull texture, we use an
approximation of the visual hull calculated by expanding a refined
silhouette texture, described in Section 3.2.2.

The key volume is overwritten by the contents of the data volume,
such that the reconstructed result of frame tr serves as the key volume
for frame tr+1. While it is common for volumetric fusion methods to
maintain a canonical volume that is incrementally completed [10,11,
24, 36], thereby building a representation of the observed geometry
over many frames, we find that refreshing the key volume at each
frame is sufficient to avoid most flickering artefacts, and means that
one volume warping operation can be omitted, and surface topology
changes are immediately reflected in the key volume.

Finally, geometry can be extracted from the TSDF volume, ei-
ther by employing the Marching Cubes algorithm [31] to extract
an explicit triangle mesh representation, or by using a ray-casting
approach to visualize the zero level-set surface.

3.3 Texturing
To apply temporally consistent textures to the reconstructed volu-
metric avatar geometry, we blend color contributions from cameras
in both capture groups. Without careful lighting or color calibration
of each RGBD camera, images from different cameras are likely
to exhibit noticeable visual differences. Reconstruction methods
that combine textures from multiple cameras therefore use spatial
blending approaches to achieve smooth transitions between parts of
the surface that are textured from different color cameras [13,28,38].
In our approach, texturing alternating frames from different camera
groups is likely to introduce distracting high-frequency temporal
color changes, even if spatial blending is implemented. Furthermore,
small inaccuracies in the intrinsic and extrinsic parameters of each
camera may lead to incorrect mapping of textures to surfaces, which
could also induce high-frequency color changes.

To solve this problem, we introduce a temporal extension to
the spatial blending approach introduced in the Holoportation sys-
tem [38] that blends colors from images captured at the reconstruc-
tion frame tr with colors captured at the previous frame tr−1. Since
inter-frame movement may have occurred between tr and tr−1, it
is not sufficient to transform the position pr of the fragment to be
textured into the texture space of cameras from both capture groups.
To obtain valid color information from frame tr−1, the position pr−1
of the fragment at frame tr−1 must be obtained. We obtain pr−1 with
the help of an inverse warping volume calculated during the warping
stage. Given pr−1, the texture space positions of the fragment in
frame tr−1 can be calculated, and the color can be retrieved and
blended with color contributions from frame tr. The blending oper-
ation is based on the angle difference between the surface normal
and the camera viewpoint directions, and a visibility test to check
whether pr is visible from each camera to prevent ghosting artefacts.

4 EVALUATION

We evaluate our approach with eight Azure Kinect cameras, posi-
tioned as shown in Figure 2, and configured according to the synchro-
nization parameters stated in Section 3.1.2. Each camera captures
and transmits JPEG color images with a resolution of 1280×720
pixels and depth images with a resolution of 640×576 pixels. Al-
though the capture and reconstruction servers can run simultaneously
on the same machine, we record the captured sequences to enable
comparison with simulated capture configurations, and run the re-
construction pipeline on a second machine in our evaluation. The
capture server, to which 8 Azure Kinect cameras were connected, has
an Intel Xeon(R) CPU E5-2687W v4 processor at 3.00 GHz, 377 GB
of RAM and an NVIDIA Quadro RTX 6000 graphics card. The
volumetric avatar reconstruction pipeline was run on a PC that was
equipped with an Intel Core i9-9900X CPU processor at 3.50GHz,
125 GB of RAM and an NVIDIA GeForce RTX 3090 graphics card.

Implementation details. Deformation estimation was imple-
mented using CUDA, while the other reconstruction stages were im-
plemented with the OpenGL graphics API. The sparse block matrix
JT J and the vector JT f , required to estimate the parameters of the
deformation field, are evaluated directly to avoid evaluating the en-
tire Jacobian matrix, as explained by Zollhöfer et al. [53]. The PCG
solver, also necessary for deformation field estimation, is adapted
from public code [17] and is implemented with cuBLAS and custom
sparse matrix multiplication kernels. Our implementation allows the
reconstruction pipeline to run at 60 Hz, which is the effective capture
frame rate when our proposed capture configuration is used. We
report the run-time performance of the main processing stages of our
reconstruction pipeline in Table 2, as well as the total reconstruction
time per frame, which includes some additional time for miscella-
neous CPU processes. We note that pre-reconstruction processes,
namely receiving, decompressing, and uploading image data to the
GPU, are performed asynchronously. These processes, which are
necessary for any reconstruction approach, do not contribute to the
reconstruction time, but do introduce latency corresponding to two
frames (32.2 ms). Pose estimation (Section 3.2.4) and asynchronous
transmission of image data by the capture server (Section 3.1.3)
also introduce 30 ms of latency between retrieving image data and
transmitting to the reconstruction server. The reconstruction pipeline
incurs a total latency of 77 ms plus network transmission time.

Capture volume. Our capture volume spans 2 meters along
each cardinal axis, containing cubical voxels with side length of
1 cm. To avoid performing TSDF integration, warping, and fusing
operations on all voxels in the capture volume, we decompose the
volume into bricks of 103 voxels, and maintain brick-level occupancy
information for the key and data volumes.

Evaluation sequences. Our pipeline was evaluated using three
sequences, each capturing different types of human movement. The

Stage Average time
Texture Processing 4.1 ms
TSDF Integration 0.2 ms

Deformation Field Estimation 3.6 ms
Volume Warping 2.5 ms
Volume Fusing 0.9 ms
Visualization 1.0 ms

Total 14.5 ms
Table 2: Mean processing times for each reconstruction stage.

sequences were recorded as color and depth image streams, and
have a duration of 10 seconds. In the Wave dataset, the subject is
static apart from waving one arm. In the Sway dataset, the subject
stands on one foot and sways from side to side, therefore inducing a
slow full-body movement. In the Move dataset, the subject moves
around more quickly inside the capture space. Avatar reconstructions
obtained from the recorded sequences are shown in Figure 5.

Wave Move

Sway

Figure 5: Reconstructed volumetric avatars from the evaluation se-
quences: Wave (top left), Sway (bottom), and Move (top right).

4.1 Comparison Configurations
To demonstrate that our proposed capture configuration and re-
construction pipeline is beneficial for reconstruction of volumet-
ric avatars with synchronizable commodity RGBD cameras, we
compare volumetric avatars reconstructed with our pipeline against
avatars reconstructed with images from alternative capture configura-
tions that are possible with the same number of RGBD cameras. We
refer to our capture configuration, detailed in Section 3, as the Offset
Capture Groups (OCG) configuration. The capture configurations
that we compare against are described in the following paragraphs.

Spatially Aligned Capture Groups (SACG). Instead of dis-
tributing all cameras evenly around the capture volume as shown
in Figure 2, each camera from group B could be spatially aligned
with a camera from group A, as shown in Figure 6 (left), such that
groups A and B provide very similar sets of views. By temporally
offsetting the center of exposure of cameras in B, as in the OCG ap-
proach, the effective reconstruction frame rate can be doubled. The
SACG configuration would be expected to provide temporally con-
sistent results, as view-dependent artifacts would remain the same in
consecutive frames. We aim to show that by offsetting the capture
groups spatially, as well as temporally, and employing our recon-
struction pipeline, we increase scene coverage and achieve improved
reconstruction accuracy compared to the SACG configuration, while
maintaining a comparable temporal consistency.

Capture
Volume

Capture
Volume

RGBD camera,
capture group A

RGBD camera,
capture group B

Spatially Aligned Capture
Groups (SACG)

Simultaneous Capture (SC)
& Reference

Figure 6: Comparison configurations. The SACG configuration fea-
tures two groups of cameras that are spatially aligned, but temporally
offset. The SC and reference configurations consist of eight cameras
that are spatially distributed, but temporally aligned.

Reference. To assess the reconstruction accuracy and temporal
consistency of the OCG and SACG configurations, we compare them
against a ground truth reconstruction, created from color and depth
images from eight RGBD cameras in each reconstruction frame.

Simultaneous Capture (SC). One further alternative capture
configuration is the SC configuration, where eight spatially dis-
tributed cameras capture images simultaneously, as shown in Figure
6 (right). This configuration does not allow the frame rate of the
avatar reconstruction to be increased, but should produce a tempo-
rally consistent volumetric avatar, since all frames are reconstructed
from the same set of cameras. The reconstructed surfaces from the
SC configuration are identical to those from the reference configu-
ration, with half the frame rate. Therefore, the SC configuration is
not included in the evaluation, since the evaluation methods used
are based on comparisons with geometry created with the reference
configuration. However, we provide a visual comparison with our
method in the video figure.

t0 t1 t2 t3 t0 t1 t3t2 t0 t1 t2 t3 t0 t1 t2 t3

0

7

Reference Offset Capture
Groups (OCG)

Simultaneous
Capture (SC)

Spatially Aligned
Capture Groups

(SACG)

C
am

er
a

ID

RGB+D images, group A camera RGB+D images, group B camera
RGB+D images not used

Figure 7: To create evaluation sequences that can be reconstructed as
if captured with our proposed configuration or any of the comparison
configurations, a sequence is recorded by eight cameras capturing si-
multaneously at 30 FPS. Images from some cameras can be removed
in each frame to simulate all of the required configurations.

Creating evaluation sequences. To compare the OCG and
SACG configurations against the reference configuration at 60 Hz,
16 cameras are required: eight without a temporal offset to compare
with reconstructions from capture group A, and eight with a tem-
poral offset to compare with reconstructions from capture group B.
Since simultaneous capture from 16 cameras is not possible with
our current hardware setup, we instead capture a reference stream
with eight cameras at 30 Hz. OCG and SACG configurations are
then simulated by removing images from each frame, as illustrated
in Figure 7. To simulate our OCG approach, images from alternat-
ing groups are removed from each frame. To simulate the SACG

R
ef

er
en

ce
 M

es
h

O
ffs

et
 C

ap
tu

re
 G

ro
up

s
(O

C
G

, o
ur

s)
S

pa
tia

lly
 A

lig
ne

d
C

ap
tu

re

G
ro

up
s

(S
A

C
G

)

1cm

0cmt=6 t=7 t=8 t=41 t=42 t=43 t=174 t=175 t=176

Figure 8: Volumetric avatar meshes reconstructed from our proposed OCG configuration (middle row) and the comparison SACG configuration
(bottom row) are compared to meshes reconstructed with the reference configuration (top row). Per-vertex distances to the reference mesh are
visualized, with red areas corresponding to a distance of 1 cm. The reconstructions from the OCG configuration exhibit less error overall, and
fewer areas with large errors, because the spatially offset groups mean that surfaces are reconstructed from more perspectives.

configuration, images from cameras in group B are removed from
each frame. To simulate the SC configuration, alternating frames
are removed from the stream entirely. The reference configuration
simply uses all eight simultaneously captured images to reconstruct
each frame. Evaluating with a 30 Hz reference means that the OCG
and SACG configurations increase reconstruction frame rate from
15 Hz to 30 Hz, instead of 30 Hz to 60 Hz. Evaluating at half the
potential frame rate poses a greater challenge for the reconstruction
pipeline, since inter-frame motions are likely to be larger, potentially
leading to a less precise estimation of the deformation field and thus
larger errors than for the real use case of 30 Hz to 60 Hz.

4.2 Qualitative Comparisons
In this section, we present visual impressions of the reconstruction
quality achieved by our approach. We also refer the reader to our
video figure in the supplemental material to observe the effect of
increasing the reconstruction frame rate.

In Figure 8, volumetric avatar geometry reconstructed with the
OCG (middle), SACG (bottom), and reference (top) configurations
is presented. Surfaces were extracted as triangle meshes using the
Marching Cubes algorithm [31]. To assess the reconstruction qual-
ity, meshes extracted from the OCG and SACG configurations are
compared against meshes extracted with the reference configuration.
Per-vertex distance from the reference mesh is calculated, mapped to
the displayed colour scale, and rendered as vertex colors, with red ar-
eas indicating a reconstruction error of 1 cm or more. It can be seen
that meshes reconstructed from the OCG configuration have lower
overall error, as well as fewer areas with large errors. This shows that
incorporating depth images from eight different perspectives into
each surface, enabled by the temporal volumetric fusion approach
used in our proposed reconstruction pipeline, leads to more accurate
surface reconstruction, even when half of the views are captured in
a temporally offset manner.

4.3 Quantitative Comparisons
In this section, we evaluate the temporal consistency of avatar
streams reconstructed with our proposed pipeline and compare

against an alternative capture configuration. We also assess the
reconstruction error of reconstructed avatars against avatars recon-
structed with a reference configuration.

4.3.1 Temporal Consistency
Our proposed volumetric avatar reconstruction approach, with spatio-
temporally offset camera groups, could be prone to exhibiting tem-
porally inconsistent surfaces and flickering artefacts due to view-
dependent artefacts changing at each frame. To evaluate the temporal
consistency of the volumetric avatar streams reconstructed by our
system, we use the Temporal Consistency Metric (TCM) proposed
by Yao et al. [47]. In its original context of evaluating video pro-
cessing techniques, the metric compares the temporal consistency
of a processed video stream V with the temporal consistency of the
raw input video stream O. We adopt the measure to evaluate the
temporal consistency of reconstructed avatar streams from the OCG
and SACG configurations (V) with respect to streams reconstructed
with the reference configuration (O). The TCM computes a tempo-
ral consistency value for V in the range [0,1], where larger values
indicate more temporal consistency, and a score of 1 means that V is
as temporally consistent as O.

To calculate a TCM value for an evaluation sequence, we render
volumetric avatar streams using TSDF ray-marching at a resolution
of 1024x1024 pixels. We compute mean TCM across all pairs of
consecutive frames. Differences between the images are calculated
by first converting the color images to grayscale images according
to ITU recommendation ITU-R BT.601-7 [25], and taking the sum
of the squared per-pixel differences.

The results of the temporal consistency evaluation are shown in
Figure 9. The OCG configuration receives TCM values of 0.50-0.72,
while the SACG configuration has TCM values of 0.53-0.83. For
the Wave dataset, the OCG configuration is clearly less temporally
consistent, but for the Sway and Move datasets, the OCG config-
uration is only slightly less temporally consistent than the SACG
configuration (although differences were statistically significant for
all sequences, when tested with the Mann-Whitney U Test). The
SACG configuration should achieve a TCM approaching 1, that

Wave Sway Move
Dataset

0.0

0.2

0.4

0.6

0.8
TC

M
p < 0.001

p < 0.05
p < 0.005

Temporal Consistency Metric (TCM)
OCG
SACG

Figure 9: Temporal consistency metric (TCM) for color images recon-
structed with OCG (ours) and SACG capture configurations.

is, be nearly as temporally consistent as the reference, because it
should not suffer from alternating view-dependent artefacts, due to
the fact that all reconstructed frames are captured from the same set
of perspectives. The discrepancy between the expectation and the
observed values could be explained by temporal sensor noise that
commodity RGBD sensors are known to suffer from. The reference
is less likely to suffer from temporal noise because more cameras
are fused to create the surface, averaging out sensor noise. For two
of our three evaluation datasets, it can be seen that the volumetric
avatar streams produced by our pipeline are nearly as temporally
coherent as those produced from the SACG configuration.

4.3.2 Reconstruction Error
In Figure 10, a quantitative evaluation of the reconstruction error
is presented for each of the evaluation sequences. Reconstructions
from the reference, OCG and SACG configurations are rendered
from multiple viewpoints using TSDF ray-marching to create depth
images. Per-pixel depth difference from the corresponding reference
images is calculated for images created from the offset and spatially
aligned configurations. A mean per-pixel depth difference per frame
is calculated, excluding per-pixel differences greater than 30 mm, as
large differences are likely to result from comparison of different
surfaces rather than reconstruction error. Our analysis shows that
geometry reconstructed with our proposed capture technique exhibits
less reconstruction error than the SACG configuration.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced a novel technique for capturing and
reconstructing volumetric avatars with synchronizable commodity
RGBD cameras that doubles the capture and reconstruction frame
rate of a set of available cameras from 30 Hz to 60 Hz. This is
achieved by employing a capture configuration comprised of two
spatio-temporally offset capture groups that provide images to a vol-
umetric avatar reconstruction server in an alternating manner. Since
the spatio-temporally offset capture groups provide images captured
from different sets of perspectives at alternating frames, potentially
leading to unpleasant flickering artefacts, we propose an accompa-
nying reconstruction pipeline based on previous work on volumetric
temporal fusion that is capable of fusing surfaces computed in pre-
vious reconstruction frames into the current reconstruction frame,
thereby producing temporally consistent volumetric avatars streams.
Our evaluation, in which we compare our proposed configuration
against capture configurations possible with the same number of
RGBD cameras, reveals that avatar streams reconstructed with our
proposed pipeline exhibit fewer surface-to-surface differences to a
reference reconstruction stream than a capture configuration com-
prised of temporally offset, but not spatially offset capture groups,
while exhibiting a comparable level of temporal consistency.

Figure 10: Reconstruction error per-frame for evaluation sequences.

Since our temporal volumetric fusion implementation relies on
body tracking to initialize the deformation field, the pipeline is
less generalizable to arbitrary scenes. This could be addressed by
incorporating a method for detecting strong point-to-point corre-
spondences between frames, as shown in previous works [10, 11].

Our proposed configuration enables volumetric avatars captured
with Azure Kinect cameras to be reconstructed at 60 Hz, twice the
maximum frame rate of a single camera, which creates generally
smoother motions of avatars in virtual reality applications. However,
the run-time performance of the avatar reconstruction pipeline is
currently limited to 60 Hz. Reconstructing at the refresh rate of the
display, typically 72 or 90Hz on modern HMDs, would eliminate
motion judder. To this end, our approach could be extended to
more capture groups, further increasing the reconstruction frame
rate. Acceleration of the reconstruction pipeline would be necessary,
which may be afforded by an increase in processing power in future
GPUs. Extension to more capture groups requires investigation of
the appropriate number and position of cameras in each group.

ACKNOWLEDGMENTS

This work is funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) under the project ID 444532506,
SPP2236 - AUDICTIVE - Auditory Cognition in Interactive Virtual
Environments, the German Federal Ministry of Education and Re-
search (BMBF) under grant 16SV8716 (project Goethe-Live-3D)
and the Thuringian Ministry for Economic Affairs, Science and
Digital Society under grant 5575/10-5 (MetaReal). We thank the
members of the Virtual Reality and Visualization group at Bauhaus-
Universität Weimar for their support.

REFERENCES

[1] D. S. Alexiadis, D. Zarpalas, and P. Daras. Real-time, realistic full-
body 3d reconstruction and texture mapping from multiple kinects. In
IVMSP 2013, pp. 1–4, 2013. doi: 10.1109/IVMSPW.2013.6611939

[2] S. Aseeri and V. Interrante. The influence of avatar representation on
interpersonal communication in virtual social environments. IEEE
Transactions on Visualization and Computer Graphics, 27(5):2608–
2617, 2021. doi: 10.1109/TVCG.2021.3067783

[3] S. Beck and B. Froehlich. Volumetric calibration and registration of
multiple rgbd-sensors into a joint coordinate system. In 2015 IEEE
Symposium on 3D User Interfaces (3DUI), pp. 89–96, 2015. doi: 10.
1109/3DUI.2015.7131731

[4] S. Beck, A. Kunert, A. Kulik, and B. Froehlich. Immersive group-to-
group telepresence. IEEE Transactions on Visualization and Computer
Graphics, 19(4):616–625, 2013. doi: 10.1109/TVCG.2013.33

[5] F. Bogo, M. J. Black, M. Loper, and J. Romero. Detailed Full-Body
Reconstructions of Moving People from Monocular RGB-D Sequences.
In 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 2300–2308. IEEE, dec 2015. doi: 10.1109/ICCV.2015.265

[6] S. Cho, S.-w. Kim, J. Lee, J. Ahn, and J. Han. Effects of volumetric
capture avatars on social presence in immersive virtual environments.
In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pp. 26–34, 2020. doi: 10.1109/VR46266.2020.00020

[7] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese,
H. Hoppe, A. Kirk, and S. Sullivan. High-quality streamable free-
viewpoint video. In ACM Transactions on Graphics, 2015. doi: 10.
1145/2766945

[8] E. Cuervo, K. Chintalapudi, and M. Kotaru. Creating the perfect
illusion: What will it take to create life-like virtual reality headsets? In
Proceedings of the 19th International Workshop on Mobile Computing
Systems & Applications, HotMobile ’18, p. 7–12. Association for
Computing Machinery, New York, NY, USA, 2018. doi: 10.1145/
3177102.3177115

[9] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
1996, 1996. doi: 10.1145/237170.237269

[10] M. Dou, P. Davidson, S. R. Fanello, S. Khamis, A. Kowdle, C. Rhe-
mann, V. Tankovich, and S. Izadi. Motion2Fusion: Real-time volumet-
ric performance capture. In ACM Transactions on Graphics, 2017. doi:
10.1145/3130800.3130801

[11] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kow-
dle, S. O. Escolano, C. Rhemann, D. Kim, J. Taylor, P. Kohli,
V. Tankovich, and S. Izadi. Fusion4D: Real-time performance capture
of challenging scenes. ACM Transactions on Graphics, 35(4):1–13, jul
2016. doi: 10.1145/2897824.2925969

[12] M. Dou, J. Taylor, H. Fuchs, A. Fitzgibbon, and S. Izadi. 3d scanning
deformable objects with a single rgbd sensor. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 493–501,
2015. doi: 10.1109/CVPR.2015.7298647

[13] R. Du, M. Chuang, W. Chang, H. Hoppe, and A. Varshney. Montage4d:
Interactive seamless fusion of multiview video textures. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, I3D ’18. Association for Computing Machinery, New York,
NY, USA, 2018. doi: 10.1145/3190834.3190843

[14] S. R. Fanello, J. Valentin, C. Rhemann, A. Kowdle, V. Tankovich,
P. Davidson, and S. Izadi. Ultrastereo: Efficient learning-based match-
ing for active stereo systems. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6535–6544, 2017. doi: 10.
1109/CVPR.2017.692

[15] W. Gao and R. Tedrake. Surfelwarp: Efficient non-volumetric single
view dynamic reconstruction. ArXiv, abs/1904.13073, 2018.

[16] M. Gonzalez-Franco, Z. Egan, M. Peachey, A. Antley, T. Randha-
vane, P. Panda, Y. Zhang, C. Y. Wang, D. F. Reilly, T. C. Peck, A. S.
Won, A. Steed, and E. Ofek. Movebox: Democratizing mocap for
the microsoft rocketbox avatar library. In 2020 IEEE International
Conference on Artificial Intelligence and Virtual Reality (AIVR), pp.
91–98, 2020. doi: 10.1109/AIVR50618.2020.00026

[17] A. Guldemond. https://github.com/alexguldemond/ssorai_
pcg, June 2019.

[18] K. Guo, P. Lincoln, P. Davidson, J. Busch, X. Yu, M. Whalen, G. Har-
vey, S. Orts-Escolano, R. Pandey, J. Dourgarian, D. Tang, A. Tkach,
A. Kowdle, E. Cooper, M. Dou, S. Fanello, G. Fyffe, C. Rhemann,
J. Taylor, P. Debevec, and S. Izadi. The relightables: Volumetric perfor-
mance capture of humans with realistic relighting. ACM Transactions
on Graphics, 38(6), nov 2019. doi: 10.1145/3355089.3356571

[19] K. Guo, F. Xu, Y. Wang, Y. Liu, and Q. Dai. Robust non-rigid motion
tracking and surface reconstruction using l0 regularization. In 2015

IEEE International Conference on Computer Vision (ICCV), pp. 3083–
3091, 2015. doi: 10.1109/ICCV.2015.353

[20] K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, and Y. Liu. Real-time geometry,
albedo, and motion reconstruction using a single rgb-d camera. ACM
Trans. Graph., 36(4), jun 2017. doi: 10.1145/3072959.3083722

[21] M. Habermann, W. Xu, M. Zollhoefer, G. Pons-Moll, and C. Theobalt.
Deepcap: Monocular human performance capture using weak supervi-
sion. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, jun 2020.

[22] M. Habermann, W. Xu, M. Zollhöfer, G. Pons-Moll, and C. Theobalt.
LiveCap: Real-time human performance capture from monocular video.
ACM Transactions on Graphics, 38(2), 2019. doi: 10.1145/3311970

[23] P. Heidicker, E. Langbehn, and F. Steinicke. Influence of avatar ap-
pearance on presence in social vr. 2017 IEEE Symposium on 3D User
Interfaces (3DUI), pp. 233–234, 2017.

[24] M. Innmann, M. Zollhöfer, M. Nießner, C. Theobalt, and M. Stam-
minger. Volumedeform: Real-time volumetric non-rigid reconstruction.
In B. Leibe, J. Matas, N. Sebe, and M. Welling, eds., Computer Vision
– ECCV 2016, pp. 362–379. Springer International Publishing, Cham,
2016.

[25] ITU. Studio encoding parameters of digital television for standard
4:3 and wide-screen 16:9 aspect ratios. Recommendation BT.601-6,
International Telecommunication Union, Geneva, March 2011.

[26] D. Jo, K.-H. Kim, and G. J. Kim. Effects of avatar and background rep-
resentation forms to co-presence in mixed reality (mr) tele-conference
systems. In SIGGRAPH ASIA 2016 Virtual Reality Meets Physical
Reality: Modelling and Simulating Virtual Humans and Environments,
SA ’16. Association for Computing Machinery, New York, NY, USA,
2016. doi: 10.1145/2992138.2992146

[27] C. Kozlov, M. Slavcheva, and S. Ilic. Patch-based non-rigid 3d recon-
struction from a single depth stream. In 2018 International Conference
on 3D Vision (3DV), pp. 42–51, 2018. doi: 10.1109/3DV.2018.00016

[28] A. Kreskowski, S. Beck, and B. Froehlich. Output-sensitive avatar
representations for immersive telepresence. IEEE Transactions on
Visualization and Computer Graphics, 28(7):2697–2709, 2022. doi: 10
.1109/TVCG.2020.3037360

[29] G. Kurillo, E. Hemingway, M. L. Cheng, and L. Cheng. Evaluating the
accuracy of the azure kinect and kinect v2. Sensors, 22, 4 2022. doi:
10.3390/s22072469

[30] C. Liu, A. Wang, C. Bu, W. Wang, and H. Sun. Human motion
tracking with less constraint of initial posture from a single rgb-d
sensor. Sensors, 21(9), may 2021. doi: 10.3390/s21093029

[31] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Proceedings of the 14th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
1987, pp. 163–169, 1987. doi: 10.1145/37401.37422

[32] A. Maimone, X. Yang, N. Dierk, A. State, M. Dou, and H. Fuchs.
General-purpose telepresence with head-worn optical see-through dis-
plays and projector-based lighting. In 2013 IEEE Virtual Reality (VR),
pp. 23–26, 2013. doi: 10.1109/VR.2013.6549352

[33] S. Meerits, V. Nozick, and H. Saito. Real-time scene reconstruction
and triangle mesh generation using multiple RGB-D cameras. Journal
of Real-Time Image Processing, 16(6):2247–2259, 2019. doi: 10.1007/
s11554-017-0736-x

[34] S. Meerits, D. Thomas, V. Nozick, and H. Saito. FusionMLS: Highly
dynamic 3D reconstruction with consumer-grade RGB-D cameras.
Computational Visual Media, 4(4):287–303, dec 2018. doi: 10.1007/
s41095-018-0121-0

[35] W. Morgenstern, A. Hilsmann, and P. Eisert. Progressive non-rigid reg-
istration of temporal mesh sequences. Proceedings - CVMP 2019: 16th
ACM SIGGRAPH European Conference on Visual Media Production,
2019. doi: 10.1145/3359998.3369411

[36] R. A. Newcombe, D. Fox, and S. M. Seitz. DynamicFusion: Recon-
struction and tracking of non-rigid scenes in real-time. Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 07-12-June:343–352, 2015. doi: 10.1109/CVPR.
2015.7298631

[37] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
fusion: Real-time dense surface mapping and tracking. In 2011 10th

https://github.com/alexguldemond/ssorai_pcg
https://github.com/alexguldemond/ssorai_pcg

IEEE International Symposium on Mixed and Augmented Reality, pp.
127–136, 2011. doi: 10.1109/ISMAR.2011.6092378

[38] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kow-
dle, Y. Degtyarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou,
V. Tankovich, C. Loop, Q. Cai, P. A. Chou, S. Mennicken, J. Valentin,
V. Pradeep, S. Wang, S. B. Kang, P. Kohli, Y. Lutchyn, C. Keskin,
and S. Izadi. Holoportation: Virtual 3d teleportation in real-time. In
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, UIST ’16, p. 741–754. Association for Computing Ma-
chinery, New York, NY, USA, 2016. doi: 10.1145/2984511.2984517

[39] F. Prada, M. Kazhdan, M. Chuang, A. Collet, and H. Hoppe. Spa-
tiotemporal atlas parameterization for evolving meshes. ACM Trans.
Graph., 36(4), jul 2017. doi: 10.1145/3072959.3073679

[40] D. Roth, J.-L. Lugrin, D. Galakhov, A. Hofmann, G. Bente, M. E.
Latoschik, and A. Fuhrmann. Avatar realism and social interaction
quality in virtual reality. In 2016 IEEE Virtual Reality (VR), pp. 277–
278, 2016. doi: 10.1109/VR.2016.7504761

[41] F. A. Smit, R. van Liere, and B. Fröhlich. The design and implemen-
tation of a vr-architecture for smooth motion. In Proceedings of the
2007 ACM Symposium on Virtual Reality Software and Technology,
VRST ’07, p. 153–156. Association for Computing Machinery, New
York, NY, USA, 2007. doi: 10.1145/1315184.1315212

[42] A. Steed and R. Schroeder. Collaboration in Immersive and Non-
immersive Virtual Environments, pp. 263–282. Springer International
Publishing, Cham, 2015. doi: 10.1007/978-3-319-10190-3 11

[43] R. W. Sumner, J. Schmid, and M. Pauly. Embedded deformation for
shape manipulation. Proceedings of the ACM SIGGRAPH Conference
on Computer Graphics, 2007. doi: 10.1145/1275808.1276478

[44] X. Suo, Y. Jiang, P. Lin, Y. Zhang, M. Wu, K. Guo, and L. Xu. Neural-
humanfvv: Real-time neural volumetric human performance rendering
using rgb cameras. In 2021 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 6222–6233, 2021. doi: 10.
1109/CVPR46437.2021.00616

[45] D. Tang, M. Dou, P. Lincoln, P. Davidson, K. Guo, J. Taylor, S. Fanello,
C. Keskin, A. Kowdle, S. Bouaziz, S. Izadi, and A. Tagliasacchi. Real-
time compression and streaming of 4d performances. ACM Trans.
Graph., 37(6), dec 2018. doi: 10.1145/3272127.3275096

[46] L. Xu, Z. Su, L. Han, T. Yu, Y. Liu, and L. Fang. UnstructuredFusion:
Realtime 4D Geometry and Texture Reconstruction Using Commercial
RGBD Cameras. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42(10), oct 2020. doi: 10.1109/TPAMI.2019.2915229

[47] C.-H. Yao, C.-Y. Chang, and S.-Y. Chien. Occlusion-aware video
temporal consistency. In Proceedings of the 25th ACM International
Conference on Multimedia, MM ’17, p. 777–785. Association for
Computing Machinery, New York, NY, USA, 2017. doi: 10.1145/
3123266.3123363

[48] M. Ye and R. Yang. Real-time simultaneous pose and shape estimation
for articulated objects using a single depth camera. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2353–
2360, 2014. doi: 10.1109/CVPR.2014.301

[49] B. Yoon, H.-i. Kim, G. A. Lee, M. Billinghurst, and W. Woo. The
effect of avatar appearance on social presence in an augmented reality
remote collaboration. In 2019 IEEE Conference on Virtual Reality and
3D User Interfaces (VR), pp. 547–556, 2019. doi: 10.1109/VR.2019.
8797719

[50] K. Yu, G. Gorbachev, U. Eck, F. Pankratz, N. Navab, and D. Roth.
Avatars for teleconsultation: Effects of avatar embodiment techniques
on user perception in 3d asymmetric telepresence. IEEE Transactions
on Visualization and Computer Graphics, 27(11):4129–4139, 2021.
doi: 10.1109/TVCG.2021.3106480

[51] Q. Zhang, B. Fu, M. Ye, and R. Yang. Quality dynamic human body
modeling using a single low-cost depth camera. In 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 676–683, 2014.
doi: 10.1109/CVPR.2014.92

[52] Y. Zheng, R. Shao, Y. Zhang, T. Yu, Z. Zheng, Q. Dai, and Y. Liu.
Deepmulticap: Performance capture of multiple characters using sparse
multiview cameras. In IEEE Conference on Computer Vision (ICCV
2021), 2021.

[53] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher,
C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, and M. Stamminger.

Real-time non-rigid reconstruction using an RGB-D camera. In ACM
Transactions on Graphics, 2014. doi: 10.1145/2601097.2601165

[54] X. Zuo, S. Wang, J. Zheng, W. Yu, M. Gong, R. Yang, and L. Cheng.
Sparsefusion: Dynamic human avatar modeling from sparse rgbd im-
ages. Trans. Multi., 23:1617–1629, jan 2021. doi: 10.1109/TMM.2020
.3001506

	Introduction
	Related Work
	System Description
	RGBD Image Capture
	Calibration and Registration
	Synchronization
	Capture Server

	Volumetric Avatar Reconstruction
	Reconstruction Pipeline Overview
	Texture Processing
	TSDF Integration
	Deformation Field Estimation
	TSDF Warping and Fusion

	Texturing

	Evaluation
	Comparison Configurations
	Qualitative Comparisons
	Quantitative Comparisons
	Temporal Consistency
	Reconstruction Error

	Conclusion and Future Work

