By 2014-01-22 solutions for the following exercises have to be submitted: 1, 5b+c+d, 6a+b, 7.

Exercise 1 : Perceptron Learning

- (a) Design a single perceptron with two inputs x_A and x_B . This perceptron shall implement the boolean formula $A \wedge \neg B$ with a suitable function $y(x_A, x_B)$.
- (b) Train the perceptron from (a) with two iterations of the batch gradient descent, with a learning rate η of 0.1 and the weights initialized with $w_0 = -0.5$ and $w_1 = w_2 = 0.5$. Use the following examples in the given order:

x_1	x_2	$c(\mathbf{x})$
0	0	0
0	1	0
1	0	1
1	1	0

(c) Design a two-layer perceptron which implements the boolean formula A XOR B.

Use the values 0 for *false* and 1 for *true*, and the threshold function $\varphi(x) = \max(sign(x), 0)$.

Exercise 2 : Perceptron Learning

Given two single perceptrons a and b each of which defined by the inequality $w_0 + w_1x_1 + w_2x_2 \ge 0$. Perceptron a has the weights $w_0 = 1, w_1 = 2, w_2 = 1$, perceptron b has the weights $w_0 = 0, w_1 = 2, w_2 = 1$. Is perceptron a more general than perceptron b?

Exercise 3 : Neural Networks

Neural networks correctly classify only the feature vectors of a linearly separable training set D.

false

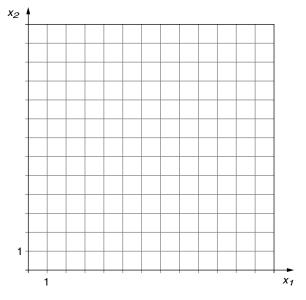
true

 \Box true, if *D* is very large

depends on the number of output units

Exercise 4 : Neural Networks

Which of the statements are true?


- Set-based gradient descent can approximate incremental gradient descent.
- Incremental gradient descent can approximate set-based gradient descent.
- Gradient descent finds always the global optimum.
- The perceptron algorithm converges always on linear separable data.

Exercise 5 : Perceptron Learning

Given is the following	training	data:
------------------------	----------	-------

Number	1	2	3	4	5	6	7	8	9	10	11	12
x_1	1	7	7	2	3	2	5	10	11	12	10	9
x_2	3	4	6	6	2	1	7	3	5	8	5	8
$c(x_1, x_2)$	1	0	1	1	0	0	1	0	0	1	0	1

(a) Draw the data into the coordinate system bellow.

- (b) The classes can be separated with straight lines. Determine such a straight line and specify its linear equation in the following form: $w_0 \cdot (-1) + w_1 \cdot x_1 + w_2 \cdot x_2 = 0$
- (c) Given a perceptron that is initialized with the weights $w_0 = 1, w_1 = -1, w_2 = 3$. Which straight line belongs to this perceptron and how is it used for classification?
- (d) Assuming the same initial weights, which weight changes are made by the incremental perceptron algorithm if at the learning rate $\eta = 0.1$, the whole dataset is presented in order three times? Compute the first three weight vectors by hand, and write a program in a language of your choice that solves all 36 iterations. Use the following table as a guide:

Iteration	x_1	x_2	$c(x_1, x_2)$	w_0	w_1	w_2	y	Err(w)
1	1	3	1	1	-1	3	?	?
2	7	4	0	?	?	?	?	?
3	7	6	1	?	?	?	?	?
÷								
13	1	3	1	?	?	?	?	?
÷								
36	9	8	1	?	?	?	?	?

Exercise 6 : Gradient Descent

- (a) What are the differences between the perceptron training rule and the gradient descent method?
- (b) What are the requirements for gradient descent being successful as a learning algorithm?

- (c) What are the biggest problems of batch gradient descent in practice?
- (d) What are the differences between the batch and the incremental (stochastic) gradient descent?

Exercise 7 : Perceptron Learning

Develop the gradient descend rule for a perceptron with output y, which applies the following special weight computation rule to its inputs:

$$y(x_1, \dots, x_p) = w_0 + w_1(x_1 + x_1^2) + \dots + w_p(x_p + x_p^2)$$

Like in the linear case, we look at the output of the first node of the perceptron without considering the threshold function.

Exercise 8 : Perceptron Learning

How can perceptrons be applied to solve a classification problem with more than two classes?