425
edits
No edit summary |
No edit summary |
||
Line 55: | Line 55: | ||
Conclusion | Conclusion | ||
This circuit is really a raw prototype, so there are many things to mention. | This circuit is really a raw prototype, so there are many things to mention. | ||
On the hardware side we want to add an analog offset for the output Voltages. We think that would make sense because then we would be able to fade between the range between 0V to 10V and -5V to 5V, which definetely is useful for the use in modular systems. But as the interface got already pretty packed up with potentiometers and (digital) offset functionalities, we we will implement this feature with a simple switch to change the output range between bipolar and unipolar. | |||
Its extremely important to add a voltage limiting circuit with diodes to both CV/Clock Inputs because right now a voltage over 11V or below -1V could damage the ADC board. Though signals over 10V are pretty uncommon in modular synthesizers and eurorack, bipolar signals from -5V to 5V or even -10V to 10V are not. | Its extremely important to add a voltage limiting circuit with diodes to both CV/Clock Inputs because right now a voltage over 11V or below -1V could damage the ADC board. Though signals over 10V are pretty uncommon in modular synthesizers and eurorack, bipolar signals from -5V to 5V or even -10V to 10V are not. | ||
So for the harmless and free use of the CV input there need to be such circuit. As well as an additional OpAmp Buffer for those inputs. | So for the harmless and free use of the CV input there need to be such circuit. As well as an additional OpAmp Buffer for those inputs. | ||
Then there need to be functionality added to the CV Input, because right now its only possible to use 1 Input as Gate Input for clocking the Sample Hold external Mode. But there are many uses for such Input. One could just be voltage conversion, so when the device is connected over usb, the, now digital data could be send via serial connection to other software as "Processing". Another way would be to implement OSC protocol to the code and make this incoming Voltage available as OSC data for the reuse by other software applications. | Then there need to be functionality added to the CV Input, because right now its only possible to use 1 Input as Gate Input for clocking the Sample Hold external Mode. But there are many uses for such Input. One could just be voltage conversion, so when the device is connected over usb, the, now digital data could be send via serial connection to other software as "Processing". Another way would be to implement OSC protocol to the code and make this incoming Voltage available as OSC data for the reuse by other software applications. | ||
Another way to use the CV input would be the modulation of internal parameters. For example the rate of the Sine LFO in that Mode(1) or the bitReduction Amount Parameter of the Simplex Noise Mode(3). | Another way to use the CV input would be the modulation of internal parameters. For example the rate of the Sine LFO in that Mode(1) or the bitReduction Amount Parameter of the Simplex Noise Mode(3). | ||
Line 67: | Line 70: | ||
After that said, we want to name and explain some functionalities we want to add in the future. | After that said, we want to name and explain some functionalities we want to add in the future. | ||
Extend existing functions | Extend existing functions | ||
- general | - general | ||
- higher Range of available Speed for Audio Range Modulation Purposes | - higher Range of available Speed for Audio Range Modulation Purposes | ||
Line 83: | Line 87: | ||
The, not yet existing "special knob" in the upper right corner of the circuit was intended for that. This function should not be another Mode which has to be selected like the other Modes. It should more be something like a filter at the end of the processing chain. When turned down, the output voltage isn't not affected. When turning up, the output voltage got slowy quantized into semitones. When it's halfway turned, the Output should spit out 12 Values per 1 Voltage, so 120 values or "notes" in the full range. That means it can play analog synthesizers musically over 10 octaves. When this "special knob" got turned above the half, it slowy fades the 12 semitones per 1 Volt into less and specific ones. By this, the device is able to turn any signal, no matter if generated, processed or just incoming into a musical scale. Which scale exactly shall be also choosable by the user over an extra button which switches between different scales. | The, not yet existing "special knob" in the upper right corner of the circuit was intended for that. This function should not be another Mode which has to be selected like the other Modes. It should more be something like a filter at the end of the processing chain. When turned down, the output voltage isn't not affected. When turning up, the output voltage got slowy quantized into semitones. When it's halfway turned, the Output should spit out 12 Values per 1 Voltage, so 120 values or "notes" in the full range. That means it can play analog synthesizers musically over 10 octaves. When this "special knob" got turned above the half, it slowy fades the 12 semitones per 1 Volt into less and specific ones. By this, the device is able to turn any signal, no matter if generated, processed or just incoming into a musical scale. Which scale exactly shall be also choosable by the user over an extra button which switches between different scales. | ||
As can be seen in the .ino code below | As can be seen in the .ino code below |
edits