382
edits
Line 5: | Line 5: | ||
=== "Police Car Badge" === | === "Police Car Badge" === | ||
GitHub Repository: | |||
https://github.com/Rik3Kat/PoliceCar_PCBArts_up-to-date | |||
'''Idea:''' | '''Idea:''' | ||
Line 50: | Line 52: | ||
<gallery> | <gallery> | ||
File: | File:Circuit Police Car Pcbnew complete .png | ||
File: | File:Circuit Police Car Pcbnew power supply.png | ||
File: | File:Circuit Police Car Pcbnew blinking.png | ||
File: | File:Circuit Police Car Pcbnew lighting up.png | ||
</gallery> | </gallery> | ||
Line 60: | Line 62: | ||
[[File: | [[File:Circuit Police Car Pcbnew blinking (2).png|400px]] | ||
Line 68: | Line 70: | ||
Like I have written in the first part of my documentation I've designed my PCB board to look like an american old school police car. I was generally inspired by the functionality of the "Astable Multivibrator Circuit". The two alternately blinking LEDs of the circuit reminded me of the typical police sirens. I chose this look of an old school police car because it is such an iconic design that everybody can recognize. | Like I have written in the first part of my documentation I've designed my PCB board to look like an american old school police car. I was generally inspired by the functionality of the "Astable Multivibrator Circuit". The two alternately blinking LEDs of the circuit reminded me of the typical police sirens. I chose this look of an old school police car because it is such an iconic design that everybody can recognize. | ||
I searched out some reference pictures and designed a drawing of the car in Inkscape. The model of the car I used as reference primarily is black and white but because I wanted to bring more color into the design, I changed the body of the car to be silver as well as changed the car doors and the engine hood to be green. This color scheme is more or less reminiscent of older german police cars. | I searched out some reference pictures and designed a drawing of the car in Inkscape. The model of the car I used as reference primarily is black and white but because I wanted to bring more color into the design, I changed the body of the car to be silver as well as changed the car doors and the engine hood to be green. This color scheme is more or less reminiscent of older german police cars. | ||
<gallery> | |||
File:reference police car1.jpg | |||
File:reference police car2 .jpg | |||
File:Inkscape .png | |||
</gallery> | |||
When I was satisfied with my design, I imported the finished layout into KiCad and aligned all the different layers. The actual police car design is placed on the backside of the PCB, whereas the circuit with all its parts, is located on the frontside. After aligning the design, I placed the components on the frontside of the board in an optimal way. Starting with where I needed the LEDs to be and then went from there. After placing all the components, I drew in the circuit tracks to connect all of parts in the same manner visualized in the schematics. | When I was satisfied with my design, I imported the finished layout into KiCad and aligned all the different layers. The actual police car design is placed on the backside of the PCB, whereas the circuit with all its parts, is located on the frontside. After aligning the design, I placed the components on the frontside of the board in an optimal way. Starting with where I needed the LEDs to be and then went from there. After placing all the components, I drew in the circuit tracks to connect all of parts in the same manner visualized in the schematics. | ||
<gallery> | |||
File:KiCad, 3D-Viewer Frontside.png | |||
File:KiCad, 3D-Viewer Backside.png | |||
</gallery> | |||
The frontside is covered with copper. This copper layer fulfills the role of the GND circuit tracks, which connects the rest of the circuit with the power supply. Of course there still are the general circuit tracks, that connect everything together, so power can reach all the components and the circuit can function. | The frontside is covered with copper. This copper layer fulfills the role of the GND circuit tracks, which connects the rest of the circuit with the power supply. Of course there still are the general circuit tracks, that connect everything together, so power can reach all the components and the circuit can function. | ||
Line 75: | Line 90: | ||
Before I explain the backside of my board, I wanted to comment on the components I used for my PCB. Almost all of the parts are SMD components, that have to be mounted only on one side on the board, facing outward. In the case of my project, it is the frontside. The battery holders on the other hand need through holes drilled into the board and copper pads on the backside of the board, so they can be soldered to it. The LEDs I used also need through holes because they are a special type of LEDs, called reverse mount LEDs. They are mounted on the board facing inward. The middle part of the LED is placed into the hole, while the pads of the LEDs still sit on the frontside of the board. With this way they shine through the PCB. I designed it like that because I wanted the side of the PCB board with the actual design to look neat and flat but I also wanted the parts of the layout resembling the siren and headlight to light up/blink. | Before I explain the backside of my board, I wanted to comment on the components I used for my PCB. Almost all of the parts are SMD components, that have to be mounted only on one side on the board, facing outward. In the case of my project, it is the frontside. The battery holders on the other hand need through holes drilled into the board and copper pads on the backside of the board, so they can be soldered to it. The LEDs I used also need through holes because they are a special type of LEDs, called reverse mount LEDs. They are mounted on the board facing inward. The middle part of the LED is placed into the hole, while the pads of the LEDs still sit on the frontside of the board. With this way they shine through the PCB. I designed it like that because I wanted the side of the PCB board with the actual design to look neat and flat but I also wanted the parts of the layout resembling the siren and headlight to light up/blink. | ||
I altered the footprint for a reverse mounted LED, that already exists in the KiCad footprint library, a bit to better fit the LED I wanted to buy and solder to my PCB. To do that I used the data sheet for the component, that I got from the manufacturer’s website. I repeated the same process for the slider switches footprint but instead of changing an already existing one I made it on my own by recreating the recommended layout found in the parts data sheet. | I altered the footprint for a reverse mounted LED, that already exists in the KiCad footprint library, a bit to better fit the LED I wanted to buy and solder to my PCB. To do that I used the data sheet for the component, that I got from the manufacturer’s website. I repeated the same process for the slider switches footprint but instead of changing an already existing one I made it on my own by recreating the recommended layout found in the parts data sheet. | ||
[[File:Custom reverse mount LED_Footprint.png|400px]] [[File:Custom Slider Switch_Footprint.png|400px]] | |||
edits