GMU:Bots 'n' Plots/Jan Dropmann

From Medien Wiki

Welcome to my new Wiki-Page

   -Name: Jan Dropmann 
   -Bachelor: Media Studies 

Twitter Bot

Takes an Image, process it and post it on Twitter

Screenshots




=====Link to the GitHub project=====

https://github.com/JHDROP/TwitterImageBot.git

Source Code
"""importing the librarys needed for image processing""" 

from PIL import Image, ImageFilter, ImageColor, ImageOps #Python Image Libray: adds image processing capabilities to your Python interpreter
import numpy as np #nummerical python used for calculating huge arrays and matrices with numeric data 
import colorsys #contains function for converting between different Colormodes as RGB and other 
import random #contains different random number generators 

import sys 		#sys module offers constants, functions and methodes from the python interpreter


class ImageProcessor:

	"""Using Image Module"""
	#just flips the image upsidedown 
	def flip(self, img):
		return img.transpose(Image.FLIP_TOP_BOTTOM)

	#rotates the image with a specific degree (e.g 90)
	def rotate(self, img):
		return img.transpose(Image.ROTATE_90)


	"""Using ImageOps Module""" #Image Operations 
	#turning the image into an one chanel (L) grayscale image 
	def grayscale(self, img):
		return ImageOps.grayscale(img)

	#substitute different colors to the white and black pixels. It expact a RGB tuple for each of them. (Only works with RGB colormode)
	def color_change(self, img):
		return ImageOps.colorize(img, (255, 0, 0),(0, 0, 255))


	"""Using ImageFilter Module"""
	#applying gaussian blur to the image. Changing the radius(intensity) of the blur 
	def blur(self, img):
		return img.filter(ImageFilter.GaussianBlur(radius=4))

	#applying contour to the image 
	def contour(self, img):
		return img.filter(ImageFilter.CONTOUR)
	#applying a edge enhancement to the image 
	def edge(self, img):
		return img.filter(ImageFilter.EDGE_ENHANCE_MORE)


	################################################################
	# some more advanced image processing                          #
	################################################################

	# shifting pixels with a specific amount | rows or columns 
	def shifting_pixels(self, img, fn=None, amount=10, horizontal=True):
		
		if fn is None:
			fn = shift_list

		# getting the imagine demention > full image 
		ymax, xmax = img.size 

		# converting the input (image) into an array with numpy 
		a1 = np.asarray(img)
		a2 = np.zeros((xmax, ymax, 3))

		# shifting columns of pixels
		if horizontal is True:

			# iterate over half(xmax / 2) of the rows | any other array of the image could be selected full image would be xmax /1 
			for x in range(xmax / 2):
				#define the amount the pixels should be moved with a random selector in a number array("amount" can be replaced by any number)
				d = random.randint(-amount, amount)
				row = a1[x,:,:] 
				a2[x,:,:] = fn(row, d)

			# iterate over the other half
			for x in range(xmax / 2, xmax):
				a2[x,:,:] = a1[x,:,:]

		# sorting rows of pixels
		else:

			# iterate over half(ymax / 2) of the columns
			for y in range(ymax / 2):
				d = random.randint(-amount, amount)
				col = a1[:,y,:]
				a2[:,y,:] = fn(col, d)

			# iterate over the other half
			for y in range(ymax / 2, ymax):
				a2[:,y,:] = a1[:,y,:]

	  
		# turn the numpy array back into an image
		a2 = np.uint8(a2)
		out = Image.fromarray(a2)

		# return the result (image)
		return out


	def shift_list(self, lst, amount):

		# make sure we got lists
		lst = list(lst)

		# combine slices
		lst = lst[amount:] + lst[:amount]
		return lst


	#pixel sorting using numpy 
	def sort(self, img, fn=None, horizontal=True, reverse=False):
		
		# get image dimensions > full image |other demensions are possible 
		ymax, xmax = img.size

		#you can apply brightness, redness, yellowness and hue to fn as they are defined below  
		if fn is None:
			fn = self.brightness
		else: 
			fn = self.redness

		# lets work with arrays and numpy (changing the image into numpy usable data)
		a1 = np.asarray(img)
		a2 = np.zeros((xmax, ymax, 3))

		# sorting rows(x) of pixels
		if horizontal is True:

			# iterate over all the rows(xmax) or any other amount of the image (e.g half (xmax / 2))
			for x in range(xmax / 1):
				row = a1[x,:,:]
				a2[x,:,:] = sorted(row, key=fn, reverse=reverse)

			for x in range(xmax / 1, xmax):
				a2[x,:,:] = a1[x,:,:]

		else:

			# iterate over all columns(y) or any other amount of the image (e.g half (ymax / 2))
			for y in range(ymax / 1):
				col = a1[:,y,:]
				a2[:,y,:] = sorted(col, key=fn, reverse=reverse)

			# iterate over the other half
			for y in range(ymax / 1, ymax):
				a2[:,y,:] = a1[:,y,:]
	  
		# turn the numpy array back into an image
		a2 = np.uint8(a2)
		out = Image.fromarray(a2)

		# return the result (image)
		return out

	################################################################
	#defining some further image processings which are colled above#
	#and will determine the order of colors  					   #
	################################################################

	def brightness(self, c):
		""" assign a value to each color """
		r, g, b = c
		return 0.01 * r + 0.587 * g + 0.114 * b

	def redness(self, c):
		""" return the amount of red """
		r, g, b = c
		return r

	def yellowness(self, c):
		""" return the amount of yellow """
		r, g, b = c
		return r * 0.5 + g * 0.5

	def hue(self, c):
		""" return the hue of some color """
		r, g, b = c
		h, s, v = colorsys.rgb_to_hsv(float(r), float(g), float(b))
		return h

	################################################################
	# trying new stuff                   #
	################################################################
	# Sorts a given row of pixels
	def sort_interval(self, interval):
		if interval == []:
			return []
		else:
			return(sorted(interval, key = lambda x: x[0] + x[1] + x[2]))

Little Bot with Processing

Created a simple Bot and an animated GIF

Screenshots