357
edits
(Created page with " '''Principle of Computational Equivalence''' Can simple programs produce very rich and complicated behaviors? Could it be possible that all of the amazing things we see in t...") |
No edit summary |
||
Line 3: | Line 3: | ||
Can simple programs produce very rich and complicated behaviors? Could it be possible that all of the amazing things we see in the universe be the result of a simple program? That would be very exciting to have a program that is an ultimate precise model of our universe. If you run it long enough it would produce complex models. Stephen Wolfram asks how would this program be like. | Can simple programs produce very rich and complicated behaviors? Could it be possible that all of the amazing things we see in the universe be the result of a simple program? That would be very exciting to have a program that is an ultimate precise model of our universe. If you run it long enough it would produce complex models. Stephen Wolfram asks how would this program be like. | ||
The principle of computational equivalence says that “systems found in the natural world can perform computations up to a maximal ("universal") level of computational power, and that most systems do in fact attain this maximal level of computational power.” | The principle of computational equivalence says that “systems found in the natural world can perform computations up to a maximal ("universal") level of computational power, and that most systems do in fact attain this maximal level of computational power.” | ||
edits