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Data Mining Overview

Definition 1 (Data Mining)
Data mining is the systematic, usually automated or semi-automated discovery
and extraction of so far unknown relations from huge data sets.

Data mining involves the following steps:

1. specification of the task

2. selection of the data

3. data preprocessing and data transformation

4. pattern recognition

5. presentation
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Data Mining Overview
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Definition 2 (Knowledge Discovery in Databases, KDD)
Knowledge Discovery in Databases is the process of identifying valid, new,
relevant, and interpretable patterns in huge data sets.

[Fayyad 1996, Wrobel 1998]
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Remarks:

q Data mining technology belongs to the field of explorative data analysis. Explorative data
analysis deals with both data presentation and search for structures, peculiarities, and
anomalies. It is employed if the research question is fuzzy or if the choice of the statistical
model is unclear.

q The data mining definition does not use the notion of “information”: under the viewpoint of
semiotics, data mining operates on the sigmatic layer only.
The interpretation of discovered patterns, i.e., the examination of information with regard to
new findings and a subjective knowledge gain, which happens on the pragmatic layer,
belongs to the field of KDD.

q In the business world, the terms data mining and knowledge discovery in databases, KDD,
are used synonymously. Note however, that data mining designates only a single step
within a KDD process, namely the analysis step for pattern recognition.

q Web data mining is the transfer and usage of data mining technology for information
extraction on the Internet and especially the World Wide Web. Text mining is the
identification of relevant information in text.
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Remarks:

q A clear separation between machine learning and data mining is not always possible. A key
difference, however, results from the sizes of the analyzed data sets: machine learning
applications are usually executed in main memory. The field of data mining arose from the
necessity to apply analysis methods to large data bases.

q The foci of machine learning are the processes and theories of learning and deduction,
such as analogical reasoning, learning from examples, or reinforcement-driven learning.
The major driving force behind data mining is the business world with their large data
bases.

q The following count to relevant data mining problems: undirected association analysis to
identify dependencies between consumer products (market basket analysis), cluster
analysis and categorization, filtering of process data, forecasting and prediction.
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Data Mining Overview
Methods and Tools

q cluster analysis

q Learning of propositional or description-logical rules. Example:
IF status=married AND house_owner=true THEN creditor=good

q Learning of association rules. Example:
“75% of the buyers of product A will buy the products B, C, and D as well.”

q principal component analysis (PCA), factor analysis

q multi-dimensional scaling (MDS)
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Cluster Analysis Basics

Cluster analysis is the unsupervised classification of a set of objects in groups,
pursuing the following objectives:

1. maximize the similarities within the groups (intra groups)

2. minimize the similarities between the groups (inter groups)
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Cluster Analysis Basics

Cluster analysis is the unsupervised classification of a set of objects in groups,
pursuing the following objectives:

1. maximize the similarities within the groups (intra groups)

2. minimize the similarities between the groups (inter groups)

Applications:

q identification of similar groups of buyers

q “higher-level” image processing: object recognition

q search of similar gene profiles

q specification of syndromes

q analysis of traffic data in computer networks

q visualization of complex graphs

q text categorization in information retrieval

ML:XI-13 Cluster Analysis © STEIN 2002-2013



Remarks:

q The setting of a cluster analysis is reverse to the setting of a variance analysis:

– A variance analysis verifies whether a nominal feature defines groups such that the
members of the different groups differ significantly with regard to a numerical feature.
I.e., the nominal feature is in the role of the independent variable, while the numerical
feature(s) is (are) in role of dependent variable(s). Example: The type of a product
packaging may define the number of customers in a supermarket who look at the
product.

– A cluster analysis in turn can be used to identify such a nominal feature, namely by
constructing a suited feature domain for the nominal variable: each cluster corresponds
implicitly to a value of the domain. Example: Equivalent but differently presented
products in a supermarket are clustered with regard to the number of customers who
buy the products.

q Cluster analysis is a tool for structure generation. Nearly nothing is known about the
nominal variable that is to be identified. In particular, there is no knowledge about the
number of domain values (the number of clusters).

q Variance analysis is a tool for structure verification.
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Cluster Analysis Basics

Let x1, . . .xn denote the p-dimensional feature vectors of n objects:

Feature 1 Feature 2 . . . Feature p

x1 x11 x12 . . . x1p

x2 x21 x22 . . . x2p

...

xn xn1 xn2 . . . xnp
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Cluster Analysis Basics

Let x1, . . .xn denote the p-dimensional feature vectors of n objects:

Feature 1 Feature 2 . . . Feature p
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30 two-dimensional feature vectors (n = 30, p = 2) :

Ü

Feature 1

Feature 2
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Cluster Analysis Basics

Definition 3 (Exclusive Clustering [splitting])
Let X be a set of feature vectors. An exclusive clustering C of X,
C = {C1, C2, . . . , Ck}, Ci ⊆ X, is a partitioning of X into non-empty, mutually
exclusive subsets Ci with

⋃
Ci∈C

Ci = X.
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Cluster Analysis Basics

Definition 3 (Exclusive Clustering [splitting])
Let X be a set of feature vectors. An exclusive clustering C of X,
C = {C1, C2, . . . , Ck}, Ci ⊆ X, is a partitioning of X into non-empty, mutually
exclusive subsets Ci with

⋃
Ci∈C

Ci = X.

Algorithms for cluster analysis are unsupervised learning methods:

q the learning process is self-organized

q there is no (external) teacher

q the optimization criterion is task- and domain-independent
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Cluster Analysis Basics

Definition 3 (Exclusive Clustering [splitting])
Let X be a set of feature vectors. An exclusive clustering C of X,
C = {C1, C2, . . . , Ck}, Ci ⊆ X, is a partitioning of X into non-empty, mutually
exclusive subsets Ci with

⋃
Ci∈C

Ci = X.

Algorithms for cluster analysis are unsupervised learning methods:

q the learning process is self-organized

q there is no (external) teacher

q the optimization criterion is task- and domain-independent

Supervised learning:

q a learning objective such as the target concept is provided

q the optimization criterion depends on the task or the domain

q information is provided about how the optimization criterion can be
maximized. Keyword: instructive feedback
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Cluster Analysis Basics
Main Stages of a Cluster Analysis
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Cluster Analysis Basics
Feature Extraction and Preprocessing

Required are (possibly new) features of high variance. Approaches:

q analysis of dispersion parameters

q dimension reduction: PCA, factor analysis, MDS

q visual inspection: scatter plots, box plots

[Webis 2012, VDM tool]
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Cluster Analysis Basics
Feature Extraction and Preprocessing

Required are (possibly new) features of high variance. Approaches:

q analysis of dispersion parameters

q dimension reduction: PCA, factor analysis, MDS

q visual inspection: scatter plots, box plots

Feature standardization can dampen the structure and make things worse:

Ü
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Cluster Analysis Basics
Computation of Distances or Similarities

Ü

x1 x2 . . . xn

x1 0 d(x1,x2) . . . d(x1,xn)

x2 - 0 . . . d(x2,xn)
...

xn - - . . . 0
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Remarks:

q Usually, the distance matrix is defined implicitly by a metric on the feature space.
q The distance matrix can be understood as the adjacency matrix of a weighted, undirected

graph G, G = 〈V,E,w〉. The set X of feature vectors is mapped one-to-one (bijection) onto
a set of nodes V . The distance d(xi,xj) corresponds to the weight w({u, v}) of edge
{u, v} ∈ E between those nodes u and v that are associated with xi and xj respectively.
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Cluster Analysis Basics
Computation of Distances or Similarities (continued)

Properties of a distance function:

1. d(x1,x2) ≥ 0

2. d(x1,x1) = 0

3. d(x1,x2) = d(x2,x1)

4. d(x1,x3) ≤ d(x1,x2) + d(x2,x3)
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Cluster Analysis Basics
Computation of Distances or Similarities (continued)

Properties of a distance function:

1. d(x1,x2) ≥ 0

2. d(x1,x1) = 0

3. d(x1,x2) = d(x2,x1)

4. d(x1,x3) ≤ d(x1,x2) + d(x2,x3)

Minkowsky metric for features with interval-based measurement scales:

d(x1,x2) =
( p∑

i=1

|x1i − x2i|
r
)1/r

where

q r = 1. Manhattan or Hamming distance, L1 norm

q r = 2. Euclidean distance, L2 norm

q r =∞. Maximum distance, L∞ norm or Lmax norm
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Cluster Analysis Basics
Computation of Distances or Similarities (continued)

Cluster analysis does not presume a particular measurement scale.

Ü Generalization of the distance function towards a (dis)similarity function by
omitting the triangle inequality. (Dis)similarities can be quantified between all
kinds of features irrespective of the given levels of measurement.
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Cluster Analysis Basics
Computation of Distances or Similarities (continued)

Cluster analysis does not presume a particular measurement scale.

Ü Generalization of the distance function towards a (dis)similarity function by
omitting the triangle inequality. (Dis)similarities can be quantified between all
kinds of features irrespective of the given levels of measurement.

Similarity coefficients given two feature vectors, x1, x2, with binary features:

Simple Matching Coefficient (SMC) =
f11 + f00

f11 + f00 + f01 + f10

Jaccard Coefficient (J) =
f11

f11 + f01 + f10
where
f11 = number of features with a value of 1 in both x1 and x2

f00 = number of features with a value of 0 in both x1 and x2

f01 = number of features with value 0 in x1 and value 1 in x2

f10 = number of features with value 1 in x1 and value 0 in x2
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Remarks:

q The definitions for the above similarity coefficients can be extended towards features with a
nominal measurement scale.

q Particular heterogeneous metrics have been developed, such as HEOM and HVDM, which
allow the combined computation of feature values from different measurement scales.

q The computation of the correlation between all features of two feature vectors (not: between
between two features over all feature vectors) allows to compare feature profiles.
Example: Q correlation coefficient

q The development of a suited, realistic, and expressive similarity measure may pose the
biggest challenge within a cluster analysis tasks. Typical problems:

– (unwanted) structure damping due to normalization
– (unwanted) sensitivity concerning outliers
– (not recognized) feature correlations
– (not considered) varying feature importances

q Similarity measures can be transformed straightforward into dissimilarity measures—and
vice versa.
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Cluster Analysis Basics
Merging Principles

meta-search-
controlled

Cluster
analysis

gradient-based

density-based
point-density-based

attraction-based

competitive

hierarchical
agglomerative

divisive

iterative
exemplar-based

exchange-based

stochastic
Gaussian mixtures

...

single link, group average

min-cut analysis

k-means, k-medoid

Kerninghan-Lin

DBSCAN

MajorClust

simulated annealing

genetic algorithms

ML:XI-31 Cluster Analysis © STEIN 2002-2013



Chapter ML:XI (continued)
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Hierarchical Cluster Analysis
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Hierarchical Cluster Analysis
Hierarchical Agglomerative Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
dC. Distance measure for two clusters.

Output: T = 〈VT , ET 〉. Cluster hierarchy or dendrogram.

1. C = {{v} | v ∈ V } // initial clustering

2. VT = {vC | C ∈ C}, ET = ∅ // initial dendrogram

3. WHILE |C| > 1 DO

4. update_distance_matrix(C, G, dC)

5. {C,C ′} = argmin
{Ci,Cj}∈ C:Ci 6=Cj

dC(Ci, Cj)

6. C = (C \ {C,C ′}) ∪ {C ∪ C ′} // merging

7. VT = VT ∪ {vC,C ′}, ET = ET ∪ {{vC,C ′, vC}, {vC,C ′, vC ′}} // dendrogram

8. ENDDO

9. RETURN(T )

Compare the above algorithm to the hierarchical divisive algorithm.
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Hierarchical Cluster Analysis
Hierarchical Agglomerative Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
dC. Distance measure for two clusters.

Output: T = 〈VT , ET 〉. Cluster hierarchy or dendrogram.

1. C = {{v} | v ∈ V } // initial clustering

2. VT = {vC | C ∈ C}, ET = ∅ // initial dendrogram

3. WHILE |C| > 1 DO

4. update_distance_matrix(C, G, dC)

5. {C,C ′} = argmin
{Ci,Cj}∈ C:Ci 6=Cj

dC(Ci, Cj)

6. C = (C \ {C,C ′}) ∪ {C ∪ C ′} // merging

7. VT = VT ∪ {vC,C ′}, ET = ET ∪ {{vC,C ′, vC}, {vC,C ′, vC ′}} // dendrogram

8. ENDDO

9. RETURN(T )

Compare the above algorithm to the hierarchical divisive algorithm.
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Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor
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Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor
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Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor
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Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor
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Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor
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Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor
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Hierarchical Cluster Analysis
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Hierarchical Cluster Analysis
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Hierarchical Cluster Analysis
Single Link: Cluster Distance Measure dC = Nearest Neighbor
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Hierarchical Cluster Analysis
Distance Measures of Hierarchical Agglomerative Algorithms [characteristics]

dC(C,C
′) = min

u∈C
v∈C′

d(u, v) single link
(nearest neighbor)

dC(C,C
′) = max

u∈C
v∈C′

d(u, v) complete link
(furthest neighbor)

dC(C,C
′) =

1

|C| · |C ′|
∑
u∈C
v∈C′

d(u, v) group average link

dC(C,C
′) =

√
2 · |C| · |C ′|
|C| + |C ′|

· ||ū− v̄|| Ward criterion (variance)

How the distance measures are employed:

q hierarchical agglomerative algorithm

q hierarchical divisive algorithm
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Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of
squares, ESS, in the new cluster that results from merging the two clusters C
and C ′. Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(||ū||2 − 2 · 〈u, ū〉 + ||u||2)

= |C| · ||ū||2 − 2|C| · ||ū||2 +
∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, mit w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
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Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of
squares, ESS, in the new cluster that results from merging the two clusters C
and C ′. Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
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(||ū||2 − 2 · 〈u, ū〉 + ||u||2)
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∑
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|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
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Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of
squares, ESS, in the new cluster that results from merging the two clusters C
and C ′. Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(||ū||2 − 2 · 〈u, ū〉 + ||u||2)

= |C| · ||ū||2 − 2|C| · ||ū||2 +
∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2
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|C| + |C ′|
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· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
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Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of
squares, ESS, in the new cluster that results from merging the two clusters C
and C ′. Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(||ū||2 − 2 · 〈u, ū〉 + ||u||2)

= |C| · ||ū||2 − 2|C| · ||ū||2 +
∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, mit w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
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· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
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Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of
squares, ESS, in the new cluster that results from merging the two clusters C
and C ′. Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(||ū||2 − 2 · 〈u, ū〉 + ||u||2)

= |C| · ||ū||2 − 2|C| · ||ū||2 +
∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, mit w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.

ML:XI-50 Cluster Analysis © STEIN 2002-2013



Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of
squares, ESS, in the new cluster that results from merging the two clusters C
and C ′. Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(||ū||2 − 2 · 〈u, ū〉 + ||u||2)

= |C| · ||ū||2 − 2|C| · ||ū||2 +
∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, mit w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
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Hierarchical Cluster Analysis
Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of
squares, ESS, in the new cluster that results from merging the two clusters C
and C ′. Derivation:

ESS(C) =
∑
u∈C

||ū− u||2 =
∑
u∈C

(||ū||2 − 2 · 〈u, ū〉 + ||u||2)

= |C| · ||ū||2 − 2|C| · ||ū||2 +
∑
u∈C

||u||2 =
∑
u∈C

||u||2 − |C| · ||ū||2

ESS(C ′) =
∑
v∈C ′
||v||2 − |C ′| · ||v̄||2

ESS(C ∪ C ′) =
∑

w∈(C∪C ′)

||w||2 − |C ∪ C ′| · ||w̄||2, mit w̄ =
|C| · ū + |C ′| · v̄
|C| + |C ′|

ESS(C ∪ C ′)− ESS(C)− ESS(C ′) = . . . =
|C| · |C ′|
|C| + |C ′|

· ||ū− v̄||2

ū and v̄ denote the mean of the points u ∈ C and v ∈ C ′ respectively.
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Hierarchical Cluster Analysis
Update Formula for Cluster Distances

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

By exploiting the already computed distances, the Lance-Williams update formula
provides an efficient means (linear time in the actual number of clusters) to obtain
the desired new distances:

dC(C ∪ C ′, Ci) = α · dC(C,Ci) +

β · dC(C ′, Ci) +

γ · dC(C,C ′) +

δ · |dC(C,Ci)− dC(C ′, Ci)|

The constants α, β, γ, δ are specific for single link, complete link, average link, and
the ward criterion. The constants are derived on the basis of the respective
computation rules for dC.
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Hierarchical Cluster Analysis
Update Formula for Cluster Distances (continued)

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

Derivation of the update formula for single link, where dC = nearest neighbor:

dC(C ∪ C ′, Ci) = min
u∈C∪C′
v∈Ci

d(u, v) [distance measure]

= min{dC(C,Ci), dC(C ′, Ci)}

= 0.5 · (dC(C,Ci) + dC(C
′, Ci))− 0.5 · |dC(C,Ci)− dC(C ′, Ci)|

= 0.5

↓
α

· dC(C,Ci) + 0.5

↓
β

· dC(C ′, Ci) + (−0.5)

↓
δ

· |dC(C,Ci)− dC(C ′, Ci)|

ML:XI-54 Cluster Analysis © STEIN 2002-2013



Hierarchical Cluster Analysis
Update Formula for Cluster Distances (continued)

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

Derivation of the update formula for single link, where dC = nearest neighbor:

dC(C ∪ C ′, Ci) = min
u∈C∪C′
v∈Ci

d(u, v) [distance measure]

= min{dC(C,Ci), dC(C ′, Ci)}

= 0.5 · (dC(C,Ci) + dC(C
′, Ci))− 0.5 · |dC(C,Ci)− dC(C ′, Ci)|

= 0.5

↓
α

· dC(C,Ci) + 0.5

↓
β

· dC(C ′, Ci) + (−0.5)

↓
δ

· |dC(C,Ci)− dC(C ′, Ci)|
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Hierarchical Cluster Analysis
Update Formula for Cluster Distances (continued)

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

Derivation of the update formula for single link, where dC = nearest neighbor:

dC(C ∪ C ′, Ci) = min
u∈C∪C′
v∈Ci

d(u, v) [distance measure]

= min{dC(C,Ci), dC(C ′, Ci)}

= 0.5 · (dC(C,Ci) + dC(C
′, Ci))− 0.5 · |dC(C,Ci)− dC(C ′, Ci)|

= 0.5

↓
α

· dC(C,Ci) + 0.5

↓
β

· dC(C ′, Ci) + (−0.5)

↓
δ

· |dC(C,Ci)− dC(C ′, Ci)|
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Hierarchical Cluster Analysis
Update Formula for Cluster Distances (continued)

After merging two clusters C and C ′ into a single new cluster, the resulting
distances to other the clusters Ci, dC(C ∪ C ′, Ci), have to be computed.

Derivation of the update formula for single link, where dC = nearest neighbor:

dC(C ∪ C ′, Ci) = min
u∈C∪C′
v∈Ci

d(u, v) [distance measure]

= min{dC(C,Ci), dC(C ′, Ci)}

= 0.5 · (dC(C,Ci) + dC(C
′, Ci))− 0.5 · |dC(C,Ci)− dC(C ′, Ci)|

= 0.5

↓
α

· dC(C,Ci) + 0.5

↓
β

· dC(C ′, Ci) + (−0.5)

↓
δ

· |dC(C,Ci)− dC(C ′, Ci)|
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Remarks:

q Link-based algorithms can be used with arbitrary measures for distances and similarities.

q Single link can be operationalized straightforward with a minimum spanning tree algorithm.

q Variance-based approaches presume interval-based measurement scales for all features.

q The uniform pseudo code structure of the hierarchical agglomerative algorithm reveals the
close relation of the different cluster analysis variants. However, this structural similarity
must be regarded with caution: the features’ measurement scales along with the point
distance computation rule, d(u, v), determine the basic merging characteristics of a cluster
analysis algorithm.

q Basic idea of the Lance-Williams update formula: instead of analyzing all members (points)
of two clusters again, the formula exploits the cluster distances that were computed in the
preceding iteration.
How large is the runtime improvement compared to a naive approach that exploits only the
distance information in G = 〈V,E,w〉?
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

Distance
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = Nearest Neighbor)

Distance
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Remarks:

q A k-nearest-neighbor variant may help to mitigate the chaining problem.

q A k-nearest-neighbor variant will prefer larger clusters as agglomeration candidates: larger
clusters contain more points and hence are more likely to become a nearest neighbor than
smaller clusters.
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.
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Hierarchical Cluster Analysis
Chaining Problem of Single Link (dC = k-Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.
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Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

Particular pattern recognition tasks or the detection of hyperspheres requires to
deal with nested clusters.
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Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)
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Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)
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Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

ML:XI-84 Cluster Analysis © STEIN 2002-2013



Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

ML:XI-85 Cluster Analysis © STEIN 2002-2013



Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)
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Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)
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Hierarchical Cluster Analysis
Nesting Problem of Complete Link (dC = Furthest Neighbor)

Reality Wish
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Hierarchical Cluster Analysis
Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

single link complete link average link Ward criterion

characteristic contractive: dilating: conservative: conservative:
cluster number low high medium medium
cluster form extended small compact spherical

chaining tendency strong low low low
outlier-detecting very good poor medium medium
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Hierarchical Cluster Analysis
Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

single link complete link average link Ward criterion

characteristic contractive: dilating: conservative: conservative:
cluster number low high medium medium
cluster form extended small compact spherical

chaining tendency strong low low low
outlier-detecting very good poor medium medium

Data-related characteristics:

noisy data susceptible susceptible unaffected unaffected
feature transformation invariant invariant – –
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Hierarchical Cluster Analysis
Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

single link complete link average link Ward criterion

characteristic contractive: dilating: conservative: conservative:
cluster number low high medium medium
cluster form extended small compact spherical

chaining tendency strong low low low
outlier-detecting very good poor medium medium

Data-related characteristics:

noisy data susceptible susceptible unaffected unaffected
feature transformation invariant invariant – –

Characteristics of the cluster distance measure dC :

monotonicity 3 3 3 3

order dependence 3 3 3 3

consistency −→ 0 −→∞ 3 −→∞
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Remarks:

q The previous table also shows the usage frequency of the algorithms: single link and
complete link are the most popular hierarchical agglomerative algorithms.

q The Ward criterion has been well-proven for cluster of equal sizes.
q Average link prefers spherical cluster forms, but it will also be able to detect potato-shaped

clusters.
q Chaining will also happen when the median distance is employed.
q The median distance and is not a monotonic cluster distance measure.
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Hierarchical Cluster Analysis
Merging Principles

meta-search-
controlled

Cluster
analysis

gradient-based

density-based
point-density-based

attraction-based

competitive

hierarchical
agglomerative

divisive

iterative
exemplar-based

exchange-based

stochastic
Gaussian mixtures

...

single link, group average

min-cut analysis

k-means, k-medoid

Kerninghan-Lin

DBSCAN

MajorClust

simulated annealing

genetic algorithms

hierarchical
agglomerative

divisive
hierarchical

agglomerative

divisive
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Hierarchical Cluster Analysis
Hierarchical Divisive Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
dC. Distance measure for two clusters.

Output: T = 〈VT , ET 〉. Cluster hierarchy or dendrogram.

1. C = {V } // initial clustering

2. VT = {vC | C ∈ C}, ET = ∅ // initial dendrogram

3. WHILE ∃Cx : (Cx ∈ C ∧ |Cx| > 1) DO

4. {C,C ′} = argmax
{Ci,Cj}:

Ci∪Cj=Cx ∧ Ci∩Cj=∅

dC(Ci, Cj)

5. C = (C \ {Cx}) ∪ {C,C ′} // splitting

6. VT = VT ∪ {vC, vC ′}, ET = ET ∪ {{vCx, vC}, {vCx, vC ′}} // dendrogram

7. ENDDO

8. RETURN(T )

Compare the above algorithm to the hierarchical agglomerative algorithm.
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Hierarchical Cluster Analysis
Hierarchical Divisive Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
dC. Distance measure for two clusters.

Output: T = 〈VT , ET 〉. Cluster hierarchy or dendrogram.

1. C = {V } // initial clustering

2. VT = {vC | C ∈ C}, ET = ∅ // initial dendrogram

3. WHILE ∃Cx : (Cx ∈ C ∧ |Cx| > 1) DO

4. {C,C ′} = argmax
{Ci,Cj}:

Ci∪Cj=Cx ∧ Ci∩Cj=∅

dC(Ci, Cj)

5. C = (C \ {Cx}) ∪ {C,C ′} // splitting

6. VT = VT ∪ {vC, vC ′}, ET = ET ∪ {{vCx, vC}, {vCx, vC ′}} // dendrogram

7. ENDDO

8. RETURN(T )

Compare the above algorithm to the hierarchical agglomerative algorithm.
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Remarks:

q The cluster distance measure dC can be chosen as with hierarchical agglomerative
algorithms. However, the worst-case complexity is exponential instead of quadratic.

q Hierarchical divisive algorithm are often designed according to the monothetic paradigm:
within each decision step only a single feature is considered. The monothetic paradigm is
particularly useful for features with ordinal and interval-based measurement scales: instead
of considering all possible partitionings, a set of feature vectors is split with regard to a
location parameter such as a feature’s median or a feature’s mean.

q In contrast to hierarchical agglomerative algorithms, a hierarchical divisive algorithm cannot
repair a “wrong” partitioning that occurred during the first iterations.

q A powerful hierarchical divisive algorithm is given with

simC(C,C
′) =

∑
e∈cut({C,C ′})

w(e) or dC(C,C
′) =

1

simC(C,C ′)
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Hierarchical Cluster Analysis
MinCut Cluster Analysis

Definition 4 (Cut, Minimum Cut)
Let G = 〈V,E,w〉 be a graph with a non-negative weight function w. Moreover, let
U ⊂ V be a non-empty subset of the node set V and let Ū be defined as
Ū = V \ U . Then the cut between U and Ū is defined as follows:

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}
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Hierarchical Cluster Analysis
MinCut Cluster Analysis

Definition 4 (Cut, Minimum Cut)
Let G = 〈V,E,w〉 be a graph with a non-negative weight function w. Moreover, let
U ⊂ V be a non-empty subset of the node set V and let Ū be defined as
Ū = V \ U . Then the cut between U and Ū is defined as follows:

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}

Moreover, let w({U, Ū}) denote the weight (or the capacity) of cut({U, Ū}):

w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)
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Hierarchical Cluster Analysis
MinCut Cluster Analysis

Definition 4 (Cut, Minimum Cut)
Let G = 〈V,E,w〉 be a graph with a non-negative weight function w. Moreover, let
U ⊂ V be a non-empty subset of the node set V and let Ū be defined as
Ū = V \ U . Then the cut between U and Ū is defined as follows:

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}

Moreover, let w({U, Ū}) denote the weight (or the capacity) of cut({U, Ū}):

w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)

cut({U, Ū}) is called minimum capacity cut of G, iff for all splittings {W, W̄},
W, W̄ 6= ∅ holds:

w({U, Ū}) ≤ w({W, W̄})
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Hierarchical Cluster Analysis
MinCut Cluster Analysis
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Hierarchical Cluster Analysis
MinCut Cluster Analysis
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Hierarchical Cluster Analysis
MinCut Cluster Analysis
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Hierarchical Cluster Analysis
MinCut Cluster Analysis
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Remarks:

q Each partitioning requires the computation of a minimum capacity cut. Note that no node is
labeled as source or sink.

q The runtime complexity of the best known algorithm for the computation of a minimum
capacity cut is in O(|V | · |E|+ |V |2 · log |V |). [Nagamochi/Ono/Ibaraki 1994]

q |V | − 1 computations of a minimum capacity cut are necessary to obtain a complete
partitioning (= one node per cluster).

q The effort for the computation of a minimum s-t-cut, i.e., a cut that considers a source s and
a sink t, is in O(|V |2 log(|E|)).

q The effort for the computation of a balanced minimum cut (k-way, k ≥ 2) is NP complete.

q In the literature on the subject, mincut cluster analysis is not classified as a hierarchical
algorithm.
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Hierarchical Cluster Analysis
Splitting Problem of the MinCut Cluster Analysis
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Hierarchical Cluster Analysis
Splitting Problem of the MinCut Cluster Analysis
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Hierarchical Cluster Analysis
Splitting Problem of the MinCut Cluster Analysis

Solution: Normalization of the cut capacity with regard to the node number.
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Hierarchical Cluster Analysis
Splitting Problem of the MinCut Cluster Analysis

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)
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Hierarchical Cluster Analysis
Splitting Problem of the MinCut Cluster Analysis

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

w ({U, U }) = 2

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)
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Hierarchical Cluster Analysis
Splitting Problem of the MinCut Cluster Analysis

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

w ({U, V }) = 2

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)
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Hierarchical Cluster Analysis
Splitting Problem of the MinCut Cluster Analysis

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

w ({U, V }) = 30

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)
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Hierarchical Cluster Analysis
Splitting Problem of the MinCut Cluster Analysis

Normalized cut capacity: w({U, Ū}) =
w({U, Ū})
w({U, V })

+
w({U, Ū})
w({Ū , V })

Illustration of w:

w ({U, U }) = 2/10 + 2/22 ≈ 0.29

w ({U, U }) = 2/16 + 2/16 ≈ 0.25

w ({U, U }) = 2/2 + 2/30 ≈ 1.07

cut({U, Ū}) = {{u, v} | {u, v} ∈ E, u ∈ U, v ∈ Ū}, w({U, Ū}) =
∑

e∈cut({U,Ū})

w(e)
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Remarks:

q The computation of a minimum cut of normalized cut capacity is NP complete.

q Efficient approximations for the computation of w({U, Ū}) have been developed and used
for image segmentation and gene expression cluster analysis. [Shi/Malik 2000]
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Hierarchical Cluster Analysis
Combination of Hierarchical Algorithms

The system Chameleon combines graph thinning, graph partitioning, and a
hierarchical cluster analysis [Karypis/Han/Kumar 2000] :
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Hierarchical Cluster Analysis
Combination of Hierarchical Algorithms

The system Chameleon combines graph thinning, graph partitioning, and a
hierarchical cluster analysis [Karypis/Han/Kumar 2000] :

The cluster distance dC(C,C ′) is defined as dC =
1

RI(C,C ′) · (RC(C,C ′))α
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Hierarchical Cluster Analysis
Combination of Hierarchical Algorithms

Chameleon [Karypis/Han/Kumar 2000] :

The parameter α in dC is task-depending and has to be determined (via trial and
error) by the user.
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Chapter ML:XI (continued)

XI. Cluster Analysis
q Data Mining Overview
q Cluster Analysis Basics
q Hierarchical Cluster Analysis
q Iterative Cluster Analysis
q Density-Based Cluster Analysis
q Cluster Evaluation
q Constrained Cluster Analysis
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Iterative Cluster Analysis
Merging Principles

meta-search-
controlled

Cluster
analysis

gradient-based

density-based
point-density-based

attraction-based

competitive

hierarchical
agglomerative

divisive

iterative
exemplar-based

exchange-based

stochastic
Gaussian mixtures

...

single link, group average

min-cut analysis

k-means, k-medoid

Kerninghan-Lin

DBSCAN

MajorClust

simulated annealing

genetic algorithms

hierarchical
agglomerative

divisive
hierarchical

agglomerative

divisive
hierarchical

agglomerative

divisive

iterative
exemplar-based

exchange-based
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Iterative Cluster Analysis
Exemplar-Based Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .
e. Minimization criterion for cluster representatives, based on d.
k. Number of desired clusters.

Output: r1, . . . , rk. Cluster representatives.

1. t = 0

2. FOR i = 1 to k DO ri(t) = choose(V ) // init representatives

3. REPEAT

4. t = t+ 1

5. FOR i = 1 to k DO Ci = ∅

6. FOREACH v ∈ V DO // find nearest representative (cluster)

7. i = argmin
j: j∈{1,...,k}

d(rj(t), v), Ci = Ci ∪ {v}

8. ENDDO

9. FOR i = 1 to k DO ri(t) = minimize(e(Ci)) // update

10. UNTIL (convergence(r1(t), . . . , rk(t)) OR t > tmax)

11. RETURN({r1(t), . . . , rk(t)})
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Iterative Cluster Analysis
Exemplar-Based Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .
e. Minimization criterion for cluster representatives, based on d.
k. Number of desired clusters.

Output: r1, . . . , rk. Cluster representatives.

1. t = 0

2. FOR i = 1 to k DO ri(t) = choose(V ) // init representatives

3. REPEAT

4. t = t+ 1

5. FOR i = 1 to k DO Ci = ∅

6. FOREACH v ∈ V DO // find nearest representative (cluster)

7. i = argmin
j: j∈{1,...,k}

d(rj(t), v), Ci = Ci ∪ {v}

8. ENDDO

9. FOR i = 1 to k DO ri(t) = minimize(e(Ci)) // update

10. UNTIL (convergence(r1(t), . . . , rk(t)) OR t > tmax)

11. RETURN({r1(t), . . . , rk(t)})
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Remarks:

q The cluster representatives are called centroids or, more general, medoids.

q The function choose(V ) operationalizes a random sampling without replacement
(in German: “zufälliges Ziehen ohne Zurücklegen”).

q If the data is from a metric space, then as distance function d the Euclidean distance
between two data points is usually chosen. An alternative and more general approach is to
choose the shortest path between two points in G.

q If the data is from a metric space, then as minimization criterion e the sum of the squared
distances to the cluster representatives (= variance criterion) is usually chosen: For points
v ∈ V from Rp, the components of the optimum cluster representative (= vector of minimum
variance) are given by the component-wise arithmetic mean of the points in the cluster.
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
k-Means with Minimization Criterion e = Variance
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Iterative Cluster Analysis
Minimization Criteria of Exemplar-Based Algorithms

e(Ci) =
∑
v∈Ci

(v − ri)2 ri = v̄Ci

centroid computation
via variance minimization
(k-means)

e(Ci) =
∑
v∈Ci

|v − ri| ri ∈ Ci
medoid computation
(k-medoid)

e(Ci) = max
v∈Ci
|v − ri| ri ∈ Ci k-center

e(Ci) =
∑
v∈V

(µi(v))2 · (v − ri)2 ri =

∑
v∈V (µi(v))2 · v∑
v∈V (µi(v))2

Fuzzy k-means
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Remarks:

q v̄Ci
denotes the arithmetic mean of the points v ∈ Ci.

q To simplify notation the cluster representative is denoted with ri instead of with ri(t).

q The sum of the squared distances to a cluster representative ri becomes minimum, if ri is
the arithmetic mean of the points in Ci. Hence, the computation of the centroid in k-means
corresponds to a local—i.e., cluster-specific—minimization of the variance.

q The medoid or central element of a cluster denotes a point ri ∈ Ci that minimizes the sum
of the distances from ri to all other points in Ci. An advantage of medoids compared to
centroids is their robustness with respect to outliers and, as a consequence, an improved
convergence behavior (= smaller number of iterations).

q Within Fuzzy k-means, µi(v) denotes the membership value of the point v ∈ V with respect
to cluster Ci.

q k-medoid and k-center can employ arbitrary distance measures and similarity measures.

q k-means and Fuzzy k-means presume interval-based measurement scales for all features.

q k-means can be operationalized straightforward as Kohonen self-organizing map, SOM, a
particular kind of neural network:

– The SOM network is comprised of an input layer with p nodes, which correspond
one-to-one to the features, and a so-called “competitive layer” with k nodes.

– Based on the network’s current edge weights the training algorithm determines for a
feature vector the so-called “winning neuron”, whose edge weights are raised according
to a learning rate η.
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Iterative Cluster Analysis
k-Means versus Single Link

Exemplar-based algorithms fail to detect nested clusters.
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Iterative Cluster Analysis
k-Means versus Single Link

Exemplar-based algorithms fail to detect nested clusters.
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Iterative Cluster Analysis
k-Means versus Single Link

Exemplar-based algorithms fail to detect nested clusters.
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Iterative Cluster Analysis
k-Means versus Single Link

Exemplar-based algorithms fail to detect nested clusters.
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Iterative Cluster Analysis
k-Means versus Single Link

Exemplar-based algorithms fail to detect clusters with large difference in size.
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Iterative Cluster Analysis
k-Means versus Single Link

Exemplar-based algorithms fail to detect clusters with large difference in size.

ML:XI-137 Cluster Analysis © STEIN 2002-2013



Iterative Cluster Analysis
Exclusive versus Non-Exclusive Algorithms

Let C = {C1, . . . , Ck} be a partitioning of a set V with
⋃

i=1...k

Ci = V .

q exclusive algorithms: ∀i, j ∈ {1, . . . , k} : i 6= j implies Ci ∩ Cj = ∅

q non-exclusive algorithms allows for multiple cluster membership
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Iterative Cluster Analysis
Exclusive versus Non-Exclusive Algorithms

Let C = {C1, . . . , Ck} be a partitioning of a set V with
⋃

i=1...k

Ci = V .

q exclusive algorithms: ∀i, j ∈ {1, . . . , k} : i 6= j implies Ci ∩ Cj = ∅

q non-exclusive algorithms allows for multiple cluster membership

q Fuzzy cluster analysis quantifies cluster membership of the v ∈ V by means
of a membership function µi(v), i ∈ {1, . . . , k}. [minimization criterion]

[Höppner/Klawonn/Kruse 1997]
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Iterative Cluster Analysis
Exclusive versus Non-Exclusive Algorithms

Application of Fuzzy cluster analysis to represent and envision cerebral tissue:

[Pham/Prince/Dagher/Xn 1996]
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Remarks:

q The domain of the linguistic variable of the Fuzzy model is comprised of k elements, which
correspond to the clusters C1, . . . , Ck.

q Usually a normalization constraint for the membership function is stated:
∑
i=1...k

µi(v) = 1

q A drawback of Fuzzy k-means variants that neglect normalization is that points with small
membership function values for a cluster are treated as outliers, instead of moving the
cluster towards these points. Hence it is useful to apply the iteration procedure with a
normalization constraint—at least within an initialization phase.

q A categorization by a Fuzzy cluster analysis is beneficial if no clear class structure is given
or if various feature vectors belong to several classes at the same time.

q A disadvantage of Fuzzy cluster analysis is the fact that the concept of cluster
representatives does not exist.
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Chapter ML:XI (continued)

XI. Cluster Analysis
q Data Mining Overview
q Cluster Analysis Basics
q Hierarchical Cluster Analysis
q Iterative Cluster Analysis
q Density-Based Cluster Analysis
q Cluster Evaluation
q Constrained Cluster Analysis
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Density-Based Cluster Analysis
Merging Principles

meta-search-
controlled

Cluster
analysis

gradient-based

density-based
point-density-based

attraction-based
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hierarchical
agglomerative

divisive

iterative
exemplar-based

exchange-based

stochastic
Gaussian mixtures

...

single link, group average

min-cut analysis

k-means, k-medoid

Kerninghan-Lin

DBSCAN

MajorClust

simulated annealing

genetic algorithms

hierarchical
agglomerative

divisive
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divisive
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Density-Based Cluster Analysis

Density-based algorithms strive to partition the graph G = 〈V,E,w〉, better: the set
of points V , into regions of equal density.

Approaches to density estimation:

q parameter-based: the type of the underlying data distribution is known

q parameterless: construction of histograms, superposition of kernel density
estimators
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Density-Based Cluster Analysis

Density-based algorithms strive to partition the graph G = 〈V,E,w〉, better: the set
of points V , into regions of equal density.

Approaches to density estimation:

q parameter-based: the type of the underlying data distribution is known

q parameterless: construction of histograms, superposition of kernel density
estimators

Example (Caribbean Islands) :
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example

Dominican
Republic

Cuba

Puerto
Rico
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example

Dominican
Republic

Cuba

Puerto
Rico
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example

Dominican
Republic

Cuba

Puerto
Rico
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Density-Based Cluster Analysis
Density Estimation with Gaussian Kernel for the Example

Dominican
Republic

Cuba

Puerto
Rico
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Density-Based Cluster Analysis
DBSCAN: Density Estimation Principle [Ester et al. 1996]

Let Nε(v) denote the ε-neighborhood of some point v ∈ V . Differentiation between
three kinds of points:

ε

Core point Noise point Border point

v
v

v

1. v is a core point ⇔ |Nε(v)| ≥ MinPts

2. v is a noise point ⇔
v is not density-reachable from any core point

3. v is a border point otherwise
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Density-Based Cluster Analysis
DBSCAN: Density Estimation Principle

A point u is density-reachable from a point v, if either of the following conditions
hold:

(a) u ∈ Nε(v), where v is a core point.

(b) There exists a set of points {v1, . . . , vl}, where

vi+1 ∈ Nε(vi) and vi is core point, i = 1, . . . , l − 1, with v1 = v, vl = u.

ε

uv

Condition (b) can be considered as the transitive application of Condition (a).
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Density-Based Cluster Analysis
DBSCAN: Cluster Interpretation

A cluster C ⊆ V fulfills the following two conditions:

1. ∀u, v : If v ∈ C and u is density-reachable from v, then u ∈ C.

u
v uv

C
Maximality
condition
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Density-Based Cluster Analysis
DBSCAN: Cluster Interpretation

A cluster C ⊆ V fulfills the following two conditions:

1. ∀u, v : If v ∈ C and u is density-reachable from v, then u ∈ C.

u
v uv

C
Maximality
condition

2. ∀u, v : u is density-connected with v, which is defined as follows:

There exists a point t wherefrom u and v are density-reachable.

u
v uv

C1

Connectivity
condition

C2
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Density-Based Cluster Analysis
DBSCAN: Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .
ε. Neighborhood radius.
MinPts. Lower bound for point number in ε-neighborhood.

Output: γ : V → Z. Cluster assignment function.

1. i = 0

2. WHILE ∃v : (v ∈ V AND γ(v) =⊥) DO // ⊥ = unclassified

3. v = choose_unclassified_point(V )

4. Nε(v) = neighborhood(G, d, v, ε)

5. IF |Nε(v)| ≥ MinPts THEN // v is core point

6. i = i+ 1

7. Ci = density_reachable_hull(G, d,Nε(v)) // form a new cluster

8. FOREACH v ∈ Ci DO γ(v) = i

9. ELSE γ(v) = −1 // v is _preliminarily_ classified as noise

10. ENDDO

11. RETURN(γ)
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Density-Based Cluster Analysis
DBSCAN: Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .
ε. Neighborhood radius.
MinPts. Lower bound for point number in ε-neighborhood.

Output: γ : V → Z. Cluster assignment function.

1. i = 0

2. WHILE ∃v : (v ∈ V AND γ(v) =⊥) DO // ⊥ = unclassified

3. v = choose_unclassified_point(V )

4. Nε(v) = neighborhood(G, d, v, ε)

5. IF |Nε(v)| ≥ MinPts THEN // v is core point

6. i = i+ 1

7. Ci = density_reachable_hull(G, d,Nε(v)) // form a new cluster

8. FOREACH v ∈ Ci DO γ(v) = i

9. ELSE γ(v) = −1 // v is _preliminarily_ classified as noise

10. ENDDO

11. RETURN(γ)
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN
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Density-Based Cluster Analysis
DBSCAN

Core point
Border point
Noise point
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Density-Based Cluster Analysis
DBSCAN

Core point
Border point
Noise point
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Density-Based Cluster Analysis
DBSCAN

Core point
Border point
Noise point
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Density-Based Cluster Analysis
DBSCAN

Core point
Border point
Noise point
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Density-Based Cluster Analysis
DBSCAN

Core point
Border point
Noise point
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Density-Based Cluster Analysis
Merging Principles
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = 〈V,E,w〉 are interpreted as attracting forces,
whereas members of the same cluster combine their forces. Illustration:

Unique membership situation, leading to a merge of two clusters:

Ü
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = 〈V,E,w〉 are interpreted as attracting forces,
whereas members of the same cluster combine their forces. Illustration:

Unique membership situation, leading to a merge of two clusters:

Ü

Unique membership situation, leading to
a change of cluster membership:

Ü

ML:XI-168 Cluster Analysis © STEIN 2002-2013



Density-Based Cluster Analysis
MajorClust: Density Estimation Principle [Stein/Niggemann 1999]

The weighted edges in a graph G = 〈V,E,w〉 are interpreted as attracting forces,
whereas members of the same cluster combine their forces. Illustration:

Unique membership situation, leading to a merge of two clusters:

Ü

Unique membership situation, leading to
a change of cluster membership:

Ü

Ambiguous membership situation:

Ü

Ü
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Density-Based Cluster Analysis
MajorClust: Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .

Output: γ : V → N. Cluster assignment function.

1. i = 0, t = False
2. FOREACH v ∈ V DO i = i + 1, γ(v) = i ENDDO

3. UNLESS t DO

4. t = True

5. FOREACH v ∈ V DO

6. γ∗ = argmax
i: i∈{1,...,|V |}

∑
{u,v}: {u,v}∈E ∧ γ(u)=i

w(u, v)

7. IF γ(v) 6= γ∗ THEN γ(v) = γ∗, t = False ENDIF // relabeling

8. ENDDO

9. ENDDO

10. RETURN(γ)
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Density-Based Cluster Analysis
MajorClust: Algorithm

Input: G = 〈V,E,w〉. Weighted graph.
d. Distance measure for two nodes in V .

Output: γ : V → N. Cluster assignment function.

1. i = 0, t = False
2. FOREACH v ∈ V DO i = i + 1, γ(v) = i ENDDO

3. UNLESS t DO

4. t = True

5. FOREACH v ∈ V DO

6. γ∗ = argmax
i: i∈{1,...,|V |}

∑
{u,v}: {u,v}∈E ∧ γ(u)=i

w(u, v)

7. IF γ(v) 6= γ∗ THEN γ(v) = γ∗, t = False ENDIF // relabeling

8. ENDDO

9. ENDDO

10. RETURN(γ)
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C1, . . . , Ck} induces k subgraphs within G = 〈V,E,w〉.
MajorClust is a heuristic to maximize the weighted partial edge connectivity, Λ(C).

Λ(C) =

k∑
i=1

|Ci| · λi
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C1, . . . , Ck} induces k subgraphs within G = 〈V,E,w〉.
MajorClust is a heuristic to maximize the weighted partial edge connectivity, Λ(C).

Λ(C) =

k∑
i=1

|Ci| · λi

Ü

Ü

Ü
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C1, . . . , Ck} induces k subgraphs within G = 〈V,E,w〉.
MajorClust is a heuristic to maximize the weighted partial edge connectivity, Λ(C).

Λ(C) =

k∑
i=1

|Ci| · λi
λ1 = 1

λ2 = 2

λ1 = 2

λ2 = 1

λ3 = 2
Ü

Ü

Ü

λ1 = 2
λ2 = 3
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Each clustering C = {C1, . . . , Ck} induces k subgraphs within G = 〈V,E,w〉.
MajorClust is a heuristic to maximize the weighted partial edge connectivity, Λ(C).

Λ(C) =

k∑
i=1

|Ci| · λi
λ1 = 1

λ2 = 2

Λ = 5·1 + 3·2 = 11

λ1 = 2

λ2 = 1

Λ = 3·2 + 2·1 + 3·2 = 14

λ3 = 2
Ü

Ü

Ü

λ1 = 2
λ2 = 3

Λ = Λ*  = 4·2 + 4·3 = 20
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Ü

Λ maximizationMincut clustering

CCC

Ü
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Density-Based Cluster Analysis
MajorClust: Density Estimation Principle (continued)

Ü

Λ maximizationMincut clustering

CCC

Ü

Theorem 1 (Strong Splitting Condition [Stein/Niggemann 1999])
Let C = {C1, . . . , Ck} be a partitioning of a graph G = 〈V,E,w〉. Moreover, let λ(G)

denote the edge connectivity of G, and let λ1, . . . , λk denote the edge connectivity
values of the k subgraphs that are induced by C1, . . . , Ck.

If the inequality λ(G) < min{λ1, . . . , λk} holds, then the partitioning defined by
Λ-maximization corresponds to the minimum cut splitting of G. The inequality is
called “Strong Splitting Condition”.
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data

Caribbean Islands, about 20.000 points:
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

Caribbean Islands, about 20.000 points:

Cluster analysis by DBSCAN:

ε = 5.0, MinPts = 4 ε = 10.0, MinPts = 5ε = 3.0, MinPts = 3
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

The problem of finding useful ε-values for DBSCAN:

Two separate
clusters were
detected.

The clusters
are merged.

ε = 3.0, MinPts = 3
ε = 3

ε = 8 v

v

u
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

Caribbean Islands, about 20.000 points:

Cluster analysis by MajorClust:

Initialization
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: Low-Dimensional Data (continued)

The problem of the global analysis approach (no restriction of an ε-neighborhood)
of MajorClust:

v

t = 16

t = 16
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: High-Dimensional Data

Document categorization setting using the Reuters corpus:

q 1 000 documents
q 10 categories: politics, culture, economics, etc.
q the documents are equally distributed and belong to exactly one category
q dimension of the feature space: > 10 000

DBSCAN:

q degenerates with increasing number of dimensions

q the degeneration is rooted in the computation of the ε-neighborhood

q dimension reduction provides a way out, e.g. by embedding the data with
multi-dimensional scaling, MDS
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Density-Based Cluster Analysis
DBSCAN versus MajorClust: High-Dimensional Data (continued)

Classification effectiveness (F measure) over dimension number:

Number of dimensions, (Stress)

F
-M

ea
su

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 (52.1) 3 (49.1) 4 (44.3) 5 (43.5) 6 (40.7) 7 (37.6) 8 (35.1) 9 (34.2) 10 (11.6) 11 (10.8) 12 (10.2) 13 (9.6)

MajorClust (original data)
MajorClust (embedded data)
DBSCAN (embedded data)

[Stein/Busch 2005]
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Remarks:

q Usually, a neighborhood search in high-dimensional spaces cannot be solved efficiently:
From a dimension number of 10-20 a linear scan of all feature vectors will be more efficient
than the application of a highly specialized space partitioning data structure such as R-tree,
X-tree, quadtree, KD-tree, etc.

q DBSCAN employs the R-tree data structure to determine ε-neighborhoods. This data
structure accomplishes the major part of the DBSCAN cluster analysis approach and is
ideally suited for treating low-dimensional data efficiently. The application of DBSCAN to
high-dimensional data either requires an embedding into a low-dimensional space or to
accept the runtime for a naive construction of ε-neighborhoods.

q The outlined “curse of dimensionality” can be addressed with approximative neighborhood
search approaches such as locality sensitive hashing, LSH, or Fuzzy fingerprinting.
[Weber 1999] [Gionis/Indyk/Motwani 1999-2004] [Stein 2005] [Stein/SMZE 2005]
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Chapter ML:XI (continued)

XI. Cluster Analysis
q Data Mining Overview
q Cluster Analysis Basics
q Hierarchical Cluster Analysis
q Iterative Cluster Analysis
q Density-Based Cluster Analysis
q Cluster Evaluation
q Constrained Cluster Analysis
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Cluster Evaluation
Overview

“The validation of clustering structures is the most difficult and
frustrating part of cluster analysis. Without a strong effort in this
direction, cluster analysis will remain a black art accessible only to
those true believers who have experience and great courage.”

[Jain/Dubes 1990]
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Cluster Evaluation [Tan/Steinbach/Kumar 2005]

Random
points
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Cluster Evaluation [Tan/Steinbach/Kumar 2005]

Random
points DBSCAN
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Cluster Evaluation [Tan/Steinbach/Kumar 2005]

Random
points DBSCAN

k-means
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Cluster Evaluation [Tan/Steinbach/Kumar 2005]

Random
points DBSCAN

k-means
Complete
link
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Cluster Evaluation
Overview

Cluster evaluation can address different issues:

q Provide evidence whether data contains non-random structures.

q Relate found structures in the data to externally provided class information.

q Rank alternative clusterings with regard to their quality.

q Determine the ideal number of clusters.

q Provide information to choose a suited clustering approach.
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Cluster Evaluation
Overview

Cluster evaluation can address different issues:

q Provide evidence whether data contains non-random structures.

q Relate found structures in the data to externally provided class information.

q Rank alternative clusterings with regard to their quality.

q Determine the ideal number of clusters.

q Provide information to choose a suited clustering approach.

(1) External validity measures:
Analyze how close is a clustering to a reference.

(2) Internal validity measures:
Analyze intrinsic characteristics of a clustering.

(3) Relative validity measures:
Analyze the sensitivity (of internal measures) during clustering generation.
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Cluster Evaluation
Overview

covering analysis

information-theoretic

external

internal

relative

absolute

cluster
validity static: structure analysis

dynamic: re-cluster stability

elbow criterion,
GAP statistics

F-Measure, Purity,
RAND statistics

dilution analysis

Kullback-Leibler,
Entropy

Davies-Bouldin,
Dunn, ρ, λ

(1) External validity measures:
Analyze how close is a clustering to a reference.

(2) Internal validity measures:
Analyze intrinsic characteristics of a clustering.

(3) Relative validity measures:
Analyze the sensitivity (of internal measures) during clustering generation.
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Cluster Evaluation
(1) External Validity Measures: F -Measure
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Class i
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

Truth
P N

Hypothesis P TP (a) FP (b)
N FN (c) TN (d)
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

Truth
P N

Hypothesis P TP (a) FP (b)
N FN (c) TN (d)
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

Truth
P N

Hypothesis P TP (a) FP (b)
N FN (c) TN (d)

ML:XI-212 Cluster Analysis © STEIN 2002-2013



Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

Truth
P N

Hypothesis P TP (a) FP (b)
N FN (c) TN (d)
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

Truth
P N

Hypothesis P TP (a) FP (b)
N FN (c) TN (d)
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

Truth
P N

Hypothesis P TP (a) FP (b)
N FN (c) TN (d)

Precision:
a

a + b

Recall:
a

a + c
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

Truth
P N

Hypothesis P TP (a) FP (b)
N FN (c) TN (d)

Precision:
a

a + b

Recall:
a

a + c

F -measure:

Fα =
1 + α

1
precision + α

recall

α = 1 harmonic mean
α ∈ (0; 1) favor precision over recall
α > 1 favor recall over precision
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Classes:
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Recall     /   = 0.26 Precision     /(     ∪     ) = 0.94 F-Measure = 0.40

In cluster:
Target:
Classes:

High precision, low recall ⇒ low F -measure.
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Recall     /   = 0.59 Precision     /(     ∪     ) = 0.53 F-Measure = 0.56

In cluster:
Target:
Classes:

Low precision, low recall ⇒ low F -measure.
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Recall     /   = 0.92 Precision     /(     ∪     ) = 0.99 F-Measure = 0.95

In cluster:
Target:
Classes:

High precision, high recall ⇒ high F -measure.
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

q Clustering C = {C1, . . . , Ck} and classification C∗ = {C∗1 , . . . , C∗l } of D.

q Fi,j is the F -measure of a cluster j computed with respect to a class i.

Recall of cluster j with respect to class i is |Cj ∩ C∗i |/|C∗i | (here: Reci,j = 1.0)

Precision of cluster j with respect to class i is |Cj ∩ C∗i |/|Cj| (here: Preci,j = 0.71)
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

q Clustering C = {C1, . . . , Ck} and classification C∗ = {C∗1 , . . . , C∗l } of D.

q Fi,j is the F -measure of a cluster j computed with respect to a class i.

Recall of cluster j with respect to class i is |Cj ∩ C∗i |/|C∗i | (here: Reci,j = 1.0)

Precision of cluster j with respect to class i is |Cj ∩ C∗i |/|Cj| (here: Preci,j = 0.71)

q Micro-averaged F -measure for 〈D, C, C∗〉 :

F =

l∑
i=1

|C∗i |
|D|

· max
j=1,...,k

{Fi,j}
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Cluster Evaluation
(1) External Validity Measures: F -Measure

Cluster j

(node-based analysis)

q Clustering C = {C1, . . . , Ck} and classification C∗ = {C∗1 , . . . , C∗l } of D.

q Fi,j is the F -measure of a cluster j computed with respect to a class i.

Recall of cluster j with respect to class i is |Cj ∩ C∗i |/|C∗i | (here: Reci,j = 1.0)

Precision of cluster j with respect to class i is |Cj ∩ C∗i |/|Cj| (here: Preci,j = 0.71)

q Macro-averaged F -measure for 〈D, C, C∗〉 :

F =
1

l

l∑
i=1

max
j=1,...,k

{Fi,j}
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Cluster Evaluation
(1) External Validity Measures: Entropy

Cluster j

(node-based analysis)

ML:XI-224 Cluster Analysis © STEIN 2002-2013



Cluster Evaluation
(1) External Validity Measures: Entropy

Cluster j

(node-based analysis)

q A cluster C acts as information source L.
L emits cluster labels L1, . . . , Ll with probabilities P (L1), . . . , P (Ll).
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Cluster Evaluation
(1) External Validity Measures: Entropy

Cluster j

(node-based analysis)

q A cluster C acts as information source L.
L emits cluster labels L1, . . . , Ll with probabilities P (L1), . . . , P (Ll).

P̂ ( ) = 10/14, P̂ ( ) = 4/14
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Cluster Evaluation
(1) External Validity Measures: Entropy

Cluster j

(node-based analysis)

q A cluster C acts as information source L.
L emits cluster labels L1, . . . , Ll with probabilities P (L1), . . . , P (Ll).

P̂ ( ) = 10/14, P̂ ( ) = 4/14

q Entropy of L : H(L) = −
∑l

i=1 P (Li) · log 2(P (Li))

Entropy of Cj wrt. C∗ : H(Cj) = −
∑

Cj∩C∗i 6=∅

|Cj ∩ C∗i |/|Cj| · log 2(|Cj ∩ C∗i |/|Cj|)
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Cluster Evaluation
(1) External Validity Measures: Entropy

Cluster j

(node-based analysis)

q A cluster C acts as information source L.
L emits cluster labels L1, . . . , Ll with probabilities P (L1), . . . , P (Ll).

P̂ ( ) = 10/14, P̂ ( ) = 4/14

q Entropy of L : H(L) = −
∑l

i=1 P (Li) · log 2(P (Li))

Entropy of Cj wrt. C∗ : H(Cj) = −
∑

Cj∩C∗i 6=∅

|Cj ∩ C∗i |/|Cj| · log 2(|Cj ∩ C∗i |/|Cj|)

q Entropy of C wrt. C∗ : H(C) =
∑
Cj∈C

|Cj|/|D| ·H(Cj)
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Cluster Evaluation
(1) External Validity Measures: Rand, Jaccard

Cluster j

true positive

false positive

true negative

false negative

(edge-based analysis)
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Cluster Evaluation
(1) External Validity Measures: Rand, Jaccard

Cluster j

true positive

false positive

true negative

false negative

(edge-based analysis)

q R(C) =
|TP | + |TN |

|TP | + |TN | + |FP | + |FN |
=
|TP | + |TN |
n(n− 1)/2

, with n = |D|

q J(C) =
|TP |

|TP | + |FP | + |FN |
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]


1.0 0.2 0.1 0.3 . . . 0.1 0.0
− 1.0 0.1 0.0 . . . 0.0 0.2

...
− − − − − 1.0 0.6
− − − − − − 1.0

 ∼


1 0 0 1 . . . 0 0
− 1 0 0 . . . 0 1

...
− − − − − 1 1
− − − − − − 1



q Construct occurrence matrix based on cluster analysis.
q Compare similarity matrix to occurrence matrix: correlation τ
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]


1.0 0.2 0.1 0.3 . . . 0.1 0.0
− 1.0 0.1 0.0 . . . 0.0 0.2

...
− − − − − 1.0 0.6
− − − − − − 1.0

 ∼


1 0 0 1 . . . 0 0
− 1 0 0 . . . 0 1

...
− − − − − 1 1
− − − − − − 1



q Construct occurrence matrix based on cluster analysis.
q Compare similarity matrix to occurrence matrix: correlation τ
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]


1.0 0.2 0.1 0.3 . . . 0.1 0.0
− 1.0 0.1 0.0 . . . 0.0 0.2

...
− − − − − 1.0 0.6
− − − − − − 1.0

 ∼


1 0 0 1 . . . 0 0
− 1 0 0 . . . 0 1

...
− − − − − 1 1
− − − − − − 1



q Construct occurrence matrix based on cluster analysis.
q Compare similarity matrix to occurrence matrix: correlation τ
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]


1.0 0.2 0.1 0.3 . . . 0.1 0.0
− 1.0 0.1 0.0 . . . 0.0 0.2

...
− − − − − 1.0 0.6
− − − − − − 1.0

 ∼


1 0 0 1 . . . 0 0
− 1 0 0 . . . 0 1

...
− − − − − 1 1
− − − − − − 1



q Construct occurrence matrix based on cluster analysis.
q Compare similarity matrix to occurrence matrix: correlation τ
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

k-means
τ = 0.58

k-means
τ = 0.92

1.0 0.2 0.1 0.3 . . . 0.1 0.0
− 1.0 0.1 0.0 . . . 0.0 0.2

...
− − − − − 1.0 0.6
− − − − − − 1.0

 ∼


1 0 0 1 . . . 0 0
− 1 0 0 . . . 0 1

...
− − − − − 1 1
− − − − − − 1



q Construct occurrence matrix based on cluster analysis.
q Compare similarity matrix to occurrence matrix: correlation τ
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

k-means at structured data. Similarity matrix sorted by cluster label.
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

DBSCAN at random data. Similarity matrix sorted by cluster label.
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

k-means at random data. Similarity matrix sorted by cluster label.
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

Complete link at random data. Similarity matrix sorted by cluster label.
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Cluster Evaluation
(2) Internal Validity Measures: Edge Correlation [Tan/Steinbach/Kumar 2005]

DBSCAN at structured data. Similarity matrix sorted by cluster label.
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Cluster Evaluation
(2) Internal Validity Measures: Structural Analysis

q Distance for two clusters, δ(C1, C2).

q Diameter of a cluster, ∆(C).

q Scatter within a cluster, σ2(C), SSE.
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Cluster Evaluation
(2) Internal Validity Measures: Structural Analysis

δ(C1, C2)

q Distance for two clusters, δ(C1, C2).

q Diameter of a cluster, ∆(C).

q Scatter within a cluster, σ2(C), SSE.
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Cluster Evaluation
(2) Internal Validity Measures: Structural Analysis

δ(C1, C2)

∆(C)

q Distance for two clusters, δ(C1, C2).

q Diameter of a cluster, ∆(C).

q Scatter within a cluster, σ2(C), SSE.
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Cluster Evaluation
(2) Internal Validity Measures: Structural Analysis

δ(C1, C2)

∆(C)

σ2(C)

q Distance for two clusters, δ(C1, C2).

q Diameter of a cluster, ∆(C).

q Scatter within a cluster, σ2(C), SSE.
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Cluster Evaluation
(2) Internal Validity Measures: Dunn Index

I(C) =
mini6=j{δ(Ci, Cj)}
max1≤l≤k{∆(Cl)}

,

I(C)→ max
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Cluster Evaluation
(2) Internal Validity Measures: Dunn Index

I(C) =
mini6=j{δ(Ci, Cj)}
max1≤l≤k{∆(Cl)}

,

I(C)→ max

ML:XI-246 Cluster Analysis © STEIN 2002-2013



Cluster Evaluation
(2) Internal Validity Measures: Dunn Index

I(C) =
mini6=j{δ(Ci, Cj)}
max1≤l≤k{∆(Cl)}

,

I(C)→ max
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Cluster Evaluation
(2) Internal Validity Measures: Dunn Index

I(C) =
mini6=j{δ(Ci, Cj)}
max1≤l≤k{∆(Cl)}

,

I(C)→ max

q Dunn is susceptible to noise.

q Dunn is biased towards the worst substructure in a clustering (cf. min)

q Dunn cannot put distances and diameters into relation.
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Cluster Evaluation
(2) Internal Validity Measures: Dunn Index

∆(C1)

C1
C3

C2

δ(C1, C2)

I(C) =
mini6=j{δ(Ci, Cj)}
max1≤l≤k{∆(Cl)}

,

I(C)→ max

q Dunn is susceptible to noise.

q Dunn is biased towards the worst substructure in a clustering (cf. min)

q Dunn cannot put distances and diameters into relation.
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]

Different retrieval models yield different similarity graphs.
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ [Stein/Meyer zu Eissen 2007]

Different retrieval models yield different similarity graphs.
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ

Compare (for alternative clusterings) the similarity density within the clusters to
the average similarity of the entire graph.
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ

Compare (for alternative clusterings) the similarity density within the clusters to
the average similarity of the entire graph.
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ

Compare (for alternative clusterings) the similarity density within the clusters to
the average similarity of the entire graph.
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ

Graph G = 〈V,E〉

q G is called sparse [dense] if |E| = O(|V |) [O(|V |2)]

q the density θ computes from the equation |E| = |V |θ
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ

Graph G = 〈V,E〉

q G is called sparse [dense] if |E| = O(|V |) [O(|V |2)]

q the density θ computes from the equation |E| = |V |θ

Similarity graph G = 〈V,E,w〉, |E| ∼ w(G) :=
∑
e∈E

w(e)

q the density θ computes from the equation w(G) = |V |θ
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Cluster Evaluation
(2) Internal Validity Measures: Expected Density ρ

Graph G = 〈V,E〉

q G is called sparse [dense] if |E| = O(|V |) [O(|V |2)]

q the density θ computes from the equation |E| = |V |θ

Similarity graph G = 〈V,E,w〉, |E| ∼ w(G) :=
∑
e∈E

w(e)

q the density θ computes from the equation w(G) = |V |θ

Induced subgraph Gi for class Ci

q the expected density ρ compares class Ci to the density average in D

ρ(Gi) =
w(Gi)

|Vi|θ
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Cluster Evaluation
(3) Relative Validity Measures: Elbow Criterion

1. Hyperparameters of a clustering algorithm: p1, . . . , pm
q number of centroids for k-means
q stopping level for hierarchical algorithms
q neighborhood size for DBSCAN

2. Clusterings C = {Cp1, . . . , Cpm} associated with p1, . . . , pm.

3. Points of an error curve {(pi, e(Cpi)) | i = 1, . . . ,m}.
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Cluster Evaluation
(3) Relative Validity Measures: Elbow Criterion

1. Hyperparameters of a clustering algorithm: p1, . . . , pm
q number of centroids for k-means
q stopping level for hierarchical algorithms
q neighborhood size for DBSCAN

2. Clusterings C = {Cp1, . . . , Cpm} associated with p1, . . . , pm.

3. Points of an error curve {(pi, e(Cpi)) | i = 1, . . . ,m}.
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Cluster Evaluation
(3) Relative Validity Measures: Elbow Criterion

1. Hyperparameters of a clustering algorithm: p1, . . . , pm
q number of centroids for k-means
q stopping level for hierarchical algorithms
q neighborhood size for DBSCAN

2. Clusterings C = {Cp1, . . . , Cpm} associated with p1, . . . , pm.

3. Points of an error curve {(pi, e(Cpi)) | i = 1, . . . ,m}.

Cluster
number

SSE

|V|1 k

4. Find point that maximizes error drop with respect to its predecessor.
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Cluster Evaluation
(3) Relative Validity Measures: Elbow Criterion

dC: Hamming distance
Merging: complete link

http://cs.jhu.edu/~razvanm/fs-expedition/2.6.x.html

Relations between 1377 file systems for Linux Kernel 2.6.0. [Razvan Musaloiu 2009]
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Cluster Evaluation
(3) Relative Validity Measures: Elbow Criterion

dC: Hamming distance
Merging: group average link

http://cs.jhu.edu/~razvanm/fs-expedition/2.6.x.html

Relations between 1377 file systems for Linux Kernel 2.6.0. [Razvan Musaloiu 2009]
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Cluster Evaluation
Correlation between External and Internal Measures

In the wild, we are not given a reference classification.

Ü An external evaluation is not possible.
(though many papers report on such experiments)

Ü Resort to an internal evaluation.
(connectivity, squared error sums, distance-diameter heuristics, etc.)
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Cluster Evaluation
Correlation between External and Internal Measures

In the wild, we are not given a reference classification.

Ü An external evaluation is not possible.
(though many papers report on such experiments)

Ü Resort to an internal evaluation.
(connectivity, squared error sums, distance-diameter heuristics, etc.)

“To which extent can an internal evaluation φ be used to predict for a
clustering its distance from the best reference classification—say, to
predict the F -measure?”

argmax
φ

{τ〈X, Y 〉 | x = F (C), y = φ(C), C ∈ C}
[Stein/Meyer zu Eissen 2007]
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Cluster Evaluation
Correlation between External and Internal Measures
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Cluster Validity

Perfect correlation (desired).
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Cluster Evaluation
Correlation between External and Internal Measures

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-35 -30 -25 -20 -15 -10 -5  0

F
-M

ea
su

re

Davies-Bouldin

5 classes, 800 documents

Davies-Bouldin:
1

k
·

k∑
i=1

max
j

s(Ci) + s(Cj)

δ(Ci, Cj)

Prefers spherical clusters.
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Cluster Evaluation
Correlation between External and Internal Measures
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5 classes, 800 documents

Dunn Index:
mini6=j{δ(Ci, Cj)}
max1≤l≤k{∆(Cl)}

Maximizes dilatation = inter/intra-cluster-diameter.
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Cluster Evaluation
Correlation between External and Internal Measures
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Expected Density: ρ̄ =
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Independent of cluster forms and sizes.
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Chapter ML:XI (continued)

XI. Cluster Analysis
q Data Mining Overview
q Cluster Analysis Basics
q Hierarchical Cluster Analysis
q Iterative Cluster Analysis
q Density-Based Cluster Analysis
q Cluster Evaluation
q Constrained Cluster Analysis
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Constrained Cluster Analysis
Person Resolution Task
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Constrained Cluster Analysis
Person Resolution Task
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Constrained Cluster Analysis
Person Resolution Task

target name
Michael Jordan

other names
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Constrained Cluster Analysis
Person Resolution Task

target name
Michael Jordan

other names

target name
Michael Jordan

(referent 1)

other names
...

target name
Michael Jordan

(referent r)

other names

The basket ball player. The statistician.
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Constrained Cluster Analysis
Person Resolution Task

target name
Michael Jordan

other names

target name
Michael Jordan

(referent 1)

other names
...

target name
Michael Jordan

(referent r)

other names

The basket ball player. The statistician.

q Multi-document resolution task:

Names, Target names: N = {n1, . . . , nl}, T ⊂ N

Referents: R = {r1, . . . , rm}, τ : R→ T , |R| � |T |
Documents: D = {d1, . . . , dn}, ν : D → P(N), |ν(di) ∩ T | = 1

A solution: γ : D → R, s.t. τ(γ(di)) ∈ ν(di)
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Constrained Cluster Analysis
Person Resolution Task

target name
Michael Jordan

other names

target name
Michael Jordan

(referent 1)

other names
...

target name
Michael Jordan

(referent r)

other names

The basket ball player. The statistician.

q Facts about the Spock data mining challenge:

Target names: |T | = 44

Referents: |R| = 1 101

Documents: |Dtrain| = 27 000 (labeled ≈ 2.3GB)
|Dtest | = 75 000 (unlabeled ≈ 7.8GB)
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Constrained Cluster Analysis
Person Resolution Task

target name
Michael Jordan

other names

target name
Michael Jordan

(referent 1)

other names
...

target name
Michael Jordan

(referent r)

other names

The basket ball player. The statistician.

q Facts about the Spock data mining challenge:

Target names: |T | = 44

Referents: |R| = 1 101

Documents: |Dtrain| = 27 000 (labeled ≈ 2.3GB)
|Dtest | = 75 000 (unlabeled ≈ 7.8GB)
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q about 23 documents
on average per referent
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Constrained Cluster Analysis
Applied to Multi-Document Resolution

Referent 1 Referent 2

1. Model similarities Ü new and established retrieval models:

q global and context-based vector space models
q explicit semantic analysis
q ontology alignment

2. Learn class memberships (supervised) Ü logistic regression

3. Find equivalence classes (unsupervised) Ü cluster analysis:

(a) adaptive graph thinning
(b) multiple, density-based cluster analysis
(c) clustering selection by expected density maximization
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Constrained Cluster Analysis
Applied to Multi-Document Resolution

Referent 1 Referent 2

1. Model similarities Ü new and established retrieval models:

q global and context-based vector space models
q explicit semantic analysis
q ontology alignment

2. Learn class memberships (supervised) Ü logistic regression

3. Find equivalence classes (unsupervised) Ü cluster analysis:

(a) adaptive graph thinning
(b) multiple, density-based cluster analysis
(c) clustering selection by expected density maximization
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Constrained Cluster Analysis
Applied to Multi-Document Resolution

Referent 1 Referent 2

1. Model similarities Ü new and established retrieval models:

q global and context-based vector space models
q explicit semantic analysis
q ontology alignment

2. Learn class memberships (supervised) Ü logistic regression

3. Find equivalence classes (unsupervised) Ü cluster analysis:

(a) adaptive graph thinning
(b) multiple, density-based cluster analysis
(c) clustering selection by expected density maximization
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Constrained Cluster Analysis
Applied to Multi-Document Resolution

Referent 1 Referent 2

1. Model similarities Ü new and established retrieval models:

q global and context-based vector space models
q explicit semantic analysis
q ontology alignment

2. Learn class memberships (supervised) Ü logistic regression

3. Find equivalence classes (unsupervised) Ü cluster analysis:

(a) adaptive graph thinning
(b) multiple, density-based cluster analysis
(c) clustering selection by expected density maximization
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Constrained Cluster Analysis
Applied to Multi-Document Resolution

Referent 1 Referent 2

1. Model similarities Ü new and established retrieval models:

q global and context-based vector space models
q explicit semantic analysis
q ontology alignment

2. Learn class memberships (supervised) Ü logistic regression

3. Find equivalence classes (unsupervised) Ü cluster analysis:

(a) adaptive graph thinning
(b) multiple, density-based cluster analysis
(c) clustering selection by expected density maximization
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Constrained Cluster Analysis
Applied to Multi-Document Resolution

Referent 1 Referent 2

1. Model similarities Ü new and established retrieval models:

q global and context-based vector space models
q explicit semantic analysis
q ontology alignment

2. Learn class memberships (supervised) Ü logistic regression

3. Find equivalence classes (unsupervised) Ü cluster analysis:

(a) adaptive graph thinning
(b) multiple, density-based cluster analysis
(c) clustering selection by expected density maximization
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Constrained Cluster Analysis
Idealized Class Membership Distribution over Similarities
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Similarity distributions for document pairs from different referents and same referent.

Logistic regression task:

q sample size: 400 000

q classes imbalance: non-target class : target class ≈ 25:1

q items are drawn uniformly distributed wrt. non-targets and targets

q items are uniformly distributed over the groups of target names

ML:XI-284 Cluster Analysis © STEIN 2002-2013



Constrained Cluster Analysis
Membership Distribution under tf·idf Vector Space Model
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Model details:

q corpus size: 25 000 documents

q dictionary size: 1,2 Mio terms

q stopwords number: 850

q stopword volume: 36%
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Constrained Cluster Analysis
Membership Distribution under Context-Based Vector Space Model
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Model details:

q corpus size: 25 000 documents

q dictionary size: 1,2 Mio terms

q stopwords number: 850

q stopword volume: 36%
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Constrained Cluster Analysis
Membership Distribution under Ontology Alignment Model
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Model details:

q DMOZ open directory project
q > 5 million documents

q 12 top-level categories
q 31 second level categories
q ML: hierarchical Bayes
q training set: 100 000 pages

Top

Arts Business Computers Games World

Virtual RealityAlgorithms AI

top level

second level

Classifier
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Constrained Cluster Analysis
In-Depth: Multi-Class Hierarchical Classification

Flat (big-bang) classification

...

Hierarchical (top-down) classification

+ simple realization
– loss of discriminative power with

increasing number of categories

+ specialized classifiers
(divide and conquer)

– misclassification at higher levels
can never become repaired
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Constrained Cluster Analysis
In-Depth: Multi-Class Hierarchical Classification

State of the art of effectiveness analyses:

1. independence assumption between categories
2. neglection of both hierarchical structure and degree of misclassification

(a)

3

(b)

3

Improvements:

q Consider similarity ϕ(Ci, Cj) between correct and wrong category.
q Consider graph distance d(Ci, Cj) between correct and wrong category.
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Constrained Cluster Analysis
In-Depth: Multi-Class Hierarchical Classification

Improvements continued:

Multi-label (multi path) classification

p > α p > β

Multi-classifier (ensemble) classification

q traverse more than one path and
return all labels

q employ probabilistic classifiers with
a threshold: split a path or not

q classification result is a majority
decision

q employ different classifier (different
types or differently parameterized)
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Constrained Cluster Analysis
Membership Distribution under Optimized Retrieval Model Combination
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Retrieval Model F1/3 -Measure

tf·idf vector space 0.39
context-based vector space 0.32
ESA Wikipedia persons 0.30
phrase structure grammar 0.17
ontology alignment 0.15

optimized combination 0.42
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Constrained Cluster Analysis
Membership Distribution under Optimized Retrieval Model Combination
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Referent 1 Referent 2 Referent m
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Constrained Cluster Analysis
Membership Distribution under Optimized Retrieval Model Combination
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Constrained Cluster Analysis
Membership Distribution under Optimized Retrieval Model Combination
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Referent 1 Referent 2 Referent m

......

ML:XI-294 Cluster Analysis © STEIN 2002-2013



Constrained Cluster Analysis
Membership Distribution under Optimized Retrieval Model Combination
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......

In the example:

q precision = 0.4

q recall = 0.43

q F1/3 = 0.41

(if false negatives are uniformly distributed)
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness
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Consideration of imbalance:

 0  0.2  0.4  0.6  0.8  1

Interval

different referents
same referents

q class imbalance factor (CIF ) of 25
⇒ precision in interval [0.725; 1] for edges between same referents: ≈ 0.17

How can F1/3 = 0.42 be achieved via cluster analysis?
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C| = 23)

⇒ |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
⇒ |TP|

|C| degree of true positives per node (here: 11)

⇒ |TP|( 1
precision − 1) false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP∗, connect to same cluster

⇒ analyze P (|FP∗| > k | D,Riid) (here: E(|FP∗|) = 2.7)
⇒ edge tie factor (ETF ) specifies the excess of true positives until tie (here: 3 . . . 5)

ETF =
|TP|

|C| · E(|FP∗|)
, effective precision = precision · CIF

ETF
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C| = 23)

⇒ |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
⇒ |TP|

|C| degree of true positives per node (here: 11)

⇒ |TP|( 1
precision − 1) false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP∗, connect to same cluster

⇒ analyze P (|FP∗| > k | D,Riid) (here: E(|FP∗|) = 2.7)
⇒ edge tie factor (ETF ) specifies the excess of true positives until tie (here: 3 . . . 5)

ETF =
|TP|

|C| · E(|FP∗|)
, effective precision = precision · CIF

ETF
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C| = 23)

⇒ |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
⇒ |TP|

|C| degree of true positives per node (here: 11)

⇒ |TP|( 1
precision − 1) false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP∗, connect to same cluster

⇒ analyze P (|FP∗| > k | D,Riid) (here: E(|FP∗|) = 2.7)
⇒ edge tie factor (ETF ) specifies the excess of true positives until tie (here: 3 . . . 5)

ETF =
|TP|

|C| · E(|FP∗|)
, effective precision = precision · CIF

ETF
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C| = 23)

⇒ |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
⇒ |TP|

|C| degree of true positives per node (here: 11)

⇒ |TP|( 1
precision − 1) false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP∗, connect to same cluster

⇒ analyze P (|FP∗| > k | D,Riid) (here: E(|FP∗|) = 2.7)
⇒ edge tie factor (ETF ) specifies the excess of true positives until tie (here: 3 . . . 5)

ETF =
|TP|

|C| · E(|FP∗|)
, effective precision = precision · CIF

ETF
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C| = 23)

⇒ |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
⇒ |TP|

|C| degree of true positives per node (here: 11)

⇒ |TP|( 1
precision − 1) false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP∗, connect to same cluster

⇒ analyze P (|FP∗| > k | D,Riid) (here: E(|FP∗|) = 2.7)
⇒ edge tie factor (ETF ) specifies the excess of true positives until tie (here: 3 . . . 5)

ETF =
|TP|

|C| · E(|FP∗|)
, effective precision = precision · CIF

ETF
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C| = 23)

⇒ |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
⇒ |TP|

|C| degree of true positives per node (here: 11)

⇒ |TP|( 1
precision − 1) false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP∗, connect to same cluster

⇒ analyze P (|FP∗| > k | D,Riid) (here: E(|FP∗|) = 2.7)
⇒ edge tie factor (ETF ) specifies the excess of true positives until tie (here: 3 . . . 5)

ETF =
|TP|

|C| · E(|FP∗|)
, effective precision = precision · CIF

ETF
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Constrained Cluster Analysis
In-Depth: Analysis of Classifier Effectiveness

Assumption: uniform distribution of referents over documents (here: 25 clusters with |C| = 23)

⇒ |TP| true 1-similarities per cluster (here: 130 @ threshold 0.725)
⇒ |TP|

|C| degree of true positives per node (here: 11)

⇒ |TP|( 1
precision − 1) false 1-similarities per cluster (here: 760)

Density-based cluster analysis: effective false positives, FP∗, connect to same cluster

⇒ analyze P (|FP∗| > k | D,Riid) (here: E(|FP∗|) = 2.7)
⇒ edge tie factor (ETF ) specifies the excess of true positives until tie (here: 3 . . . 5)

ETF =
|TP|

|C| · E(|FP∗|)
, effective precision = precision · CIF

ETF
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Determine optimum similarity threshold for class-membership function:

θ∗ = argmax
θ∈[0;1]

{ 1 + α
ETF

precisionθ·CIF + α
recallθ

}

θ∗ considers co-variate shift, introduces model formation bias and sample selection bias.
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Constrained Cluster Analysis
Model Selection: Our Risk Minimization Strategy

Retrieval Model F1/3 -Measure

tf·idf vector space 0.39
context-based vector space 0.32
ESA Wikipedia persons 0.30
phrase structure grammar 0.17
ontology alignment 0.15

optimized combination 0.42
Ensemble cluster analysis 0.40

Ensemble cluster analysis: higher bias, better generalization.

(1) Do we speculate on a better fit for Dtest?

(2) Do we expect a significant covariate shift, more noise, etc. in Dtest?
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Constrained Cluster Analysis
Recap

1. Multi-document resolution can be tackled with constrained cluster analysis.

2. Constraints are derived from labeled examples.

3. Class membership function ties constraints to multiple retrieval models.

4. Advanced density-based clustering technology is key.
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Constrained Cluster Analysis
References

q Disambiguating Web Appearances of People in a Social Network.
[R. Bekkerman, A. McCallum. WWW 2005]

q A Bayesian Model for Supervised Clustering with the Dirichlet Process Prior.
[H. Daumé III, D. Marcu. Journal MLR 2005]

q Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis.
[E. Gabrilovich, S. Markovitch. IJCAI 2007]

q Unsupervised Discrimination of Person Names in Web Contexts.
[T. Pedersen, A. Kulkarni. CICLing 2007]

q On Information Need and Categorizing Search.
[S. Meyer zu Eissen. Dissertation, Paderborn University, 2007]

q Weighted Experts: A Solution for the Spock Data Mining Challenge.
[B. Stein, S. Meyer zu Eissen. I-KNOW 2008]

q GRAPE: A System for Disambiguating and Tagging People Names in Web Search.
[L. Jiang, W. Shen, J. Wang, N. An. WWW 2010]

ML:XI-309 Cluster Analysis © STEIN 2002-2013


	contents 1
	DM overview

	contents 2

	cluster analysis basics 
	main stages

	distances and similarities

	merging principles


	contents 3

	hierarchical analysis

	agglomerative algorithms

	distance measures

	characteristics

	divisive algorithms


	contents 4

	iterative analysis

	minimization criteria


	contents 5

	density-based analysis

	Gaussian kernels

	dbscan

	majorclust


	contents 6

	contents 7


