
Chapter ML:II

II. Machine Learning Basics
q On Data
q Regression
q Concept Learning: Search in Hypothesis Space
q Concept Learning: Search in Version Space
q Measuring Performance
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On Data [Tan et al. 2005]

q An object o ∈ O is described by a set of attributes.
An object is also known as record, point, case, sample, entity, or instance.

q An attribute A is a property of an object.
An attribute is also known as variable, field, characteristic, or feature.

q A measurement scale is a system (often a convention) of assigning
a numerical or symbolic value to an attribute of an object.

Attributes

Objects

 ID     Check	        Status	    Income     Risk

  1	     +	         single	   125 000	 No

  2	     -	        married	   100 000	 No

  3	     -	         single	     70 000	 No

  4	     +	        married	   120 000	 No

  5	     -	        divorced	    95 000	 Yes

  6	     -	        married	     60 000	 No

  7	     +	        divorced	  220 000	 No

  8	     -	         single	     85 000	 Yes

  9	     -	        married	     75 000	 No

10	     -	         single	     90 000	 Yes
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On Data [Tan et al. 2005]

q Attribute values may vary from one object to another or one time to another.

q The same attribute can be mapped to different attribute values.
Example: height can be measured in feet or meters.

q Different attributes can be mapped to the same set of values.
Example: attribute values for ID and age are integers.

The way an attribute is measured may not match the attribute’s properties:
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On Data [Tan et al. 2005]

Types of Attributes

Type Comparison Statistics Examples

categorical nominal
(qualitative)

values are names,
only information to
distinguish objects

= 6=

mode, entropy,
contingency,
correlation, χ2 test

zip codes, employee
IDs, eye color,
gender: {male, female}
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Type Comparison Statistics Examples

categorical nominal
(qualitative)

values are names,
only information to
distinguish objects

= 6=

mode, entropy,
contingency,
correlation, χ2 test

zip codes, employee
IDs, eye color,
gender: {male, female}

ordinal enough information to
order objects

< > ≤ ≥

median, percentiles,
rank correlation,
run tests, sign tests
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quality: {good, better,
best}
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temperature in
Fahrenheit

ML:II-8 Basics c©STEIN 2005-2012



On Data [Tan et al. 2005]

Types of Attributes

Type Comparison Statistics Examples

categorical nominal
(qualitative)

values are names,
only information to
distinguish objects

= 6=

mode, entropy,
contingency,
correlation, χ2 test

zip codes, employee
IDs, eye color,
gender: {male, female}

ordinal enough information to
order objects

< > ≤ ≥

median, percentiles,
rank correlation,
run tests, sign tests

hardness of minerals,
grades, street numbers,
quality: {good, better,
best}

numeric interval
(quantitative)

differences are
meaningful, a unit of
measurement exists

+ −

mean,
standard deviation,
Pearson’s correlation,
t-test, F -test

calendar dates,
temperature in Celsius,
temperature in
Fahrenheit

ratio differences and ratios
are meaningful

∗ /

geometric mean,
harmonic mean,
percent variation

temperature in Kelvin,
monetary quantities,
counts, age, length,
electrical current
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On Data [Tan et al. 2005]

Types of Attributes

Type Permissible transformation Comment

categorical nominal
(qualitative)

any one-to-one mapping,
permutation of values

A reassignment of employee ID
numbers will not make any
difference.
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On Data [Tan et al. 2005]

Types of Attributes

Type Permissible transformation Comment

categorical nominal
(qualitative)

any one-to-one mapping,
permutation of values

A reassignment of employee ID
numbers will not make any
difference.

ordinal any order-preserving change of
values: x→ f(x), where f is a
monotonic

An attribute encompassing the
notion of “{good, better, best}” can
be represented equally well by the
values {1, 2, 3}.

numeric interval
(quantitative)

x→ a · x+ b, where a and b are
constants

Thus, the Fahrenheit and Celsius
temperature scales differ in terms
of where their zero value is and the
size of a unit (degree).

ratio x→ a · x, where a is a constant Length can be measured in meters
or feet.
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Remarks:

q Identifying, considering, and measuring an attribute A of an object O is the heart of model
formation and always goes along with a sort of abstraction. Formally, this abstraction is
operationalized by a model formation function α : O → X. [ML Introduction]

q The terms “attribute” and “feature” can be used synonymously. However, a slight distinction
is the following: attributes are often associated with objects, O, while features usually
designate the dimensions of the feature space, X.

q The type of an attribute is also referred to as the type of a measurement scale or level of
measurement.

q We call a transformation of an attribute permissible if its meaning is unchanged after the
transformation.

q Distinguish between discrete attributes and continuous attributes. The former can only take
a finite or countably infinite set of values, the latter can be measured in infinitely small units.
Be careful when deriving from this distinction an attribute’s type.

q We will encode attributes of interval type or ratio type by real numbers. Note that attributes
of nominal type and ordinal type can also be encoded by real numbers.

q Particular learning methods require particular attribute types.

ML:II-14 Basics c©STEIN 2005-2012

machine-learning/unit-en-ml-introduction.pdf#specification-classification-problem


On Data [Tan et al. 2005]

Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with
differently intricate characteristics:

1. Inhomogeneity of attributes:
Consider the combination of different attribute types within a single object.

2. Inhomogeneity of objects:
Consider the combination of different objects in a single data set.

3. Inhomogeneity of distributions:
The correlation between attributes varies in the instance space.

4. Curse of dimensionality:
Attribute number and object density stand in exponential relation.

5. Resolution:
The number of objects or attributes may be given at different resolutions.
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On Data [Tan et al. 2005]

Types of Data Sets: Record Data

Collection of records, each of which consists of a fixed set of attributes:

 ID     Check	        Status	    Income     Risk

  1	     +	         single	   125 000	 No

  2	     -	        married	   100 000	 No

  3	     -	         single	     70 000	 No

  4	     +	        married	   120 000	 No

  5	     -	        divorced	    95 000	 Yes

  6	     -	        married	     60 000	 No

  7	     +	        divorced	  220 000	 No

  8	     -	         single	     85 000	 Yes

  9	     -	        married	     75 000	 No

10	     -	         single	     90 000	 Yes

q If all elements in a data set have the same fixed set of numeric attributes,
they can be thought of as points in a multi-dimensional space.

q Such data can be represented by a matrix, where each row stores an object
and each column stores an attribute.
Example: term-document matrices in information retrieval.
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On Data [Tan et al. 2005]

Types of Data Sets: Graph Data

Graph of the Linked Open Data cloud [richard.cyganiak.de] :
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On Data [Tan et al. 2005]

Types of Data Sets: Ordered Data

Average monthly temperature of land and ocean (= spatio-temporal data) :
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On Data [Tan et al. 2005]

Data Quality

When repeating measurements of a quantity, measurement errors and data
collection errors may occur during the measurement process. Questions:

1. What kinds of data quality problems exist?

2. How to detect data quality problems?

3. How to address data quality problems?
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On Data [Tan et al. 2005]

Data Quality

When repeating measurements of a quantity, measurement errors and data
collection errors may occur during the measurement process. Questions:

1. What kinds of data quality problems exist?

2. How to detect data quality problems?

3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)
Given a set of repeated measurements of the same quantity. Then, the closeness
of the measurements to one another is called precision, a possible systematic
variation is called bias, and the closeness to the true value is called accuracy.
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On Data [Tan et al. 2005]

Data Quality

When repeating measurements of a quantity, measurement errors and data
collection errors may occur during the measurement process. Questions:

1. What kinds of data quality problems exist?

2. How to detect data quality problems?

3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)
Given a set of repeated measurements of the same quantity. Then, the closeness
of the measurements to one another is called precision, a possible systematic
variation is called bias, and the closeness to the true value is called accuracy.

Examples for data quality problems:

q noise, artifacts, outliers

q missing values

q duplicate data
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On Data [Tan et al. 2005]

Data Quality: Noise

Noise refers to random modifications of attributes that often have a spatial or
temporal characteristics:

sin waves sin waves with noise

Artifacts refer to more deterministic distortions of a measurement process.
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On Data [Tan et al. 2005]

Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably
different than most of the other elements:
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On Data [Tan et al. 2005]

Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably
different than most of the other elements:

Cluster

Noise

Outlier
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On Data [Tan et al. 2005]

Data Quality: Missing Values

Main reasons for missing values:

1. Information is not collected.
Example: people decline to give their age or weight.

2. Attributes may not be applicable to all elements in O.
Example: annual income is not applicable to children.

Strategies for handling missing values:

q eliminate members of the data

q estimate missing values

q ignore the missing value during analysis

q replace with all possible values weighted by their probabilities
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On Data [Tan et al. 2005]

Data Preprocessing

q aggregation of objects in O

q sampling of object set O

q sampling of feature space X

q selection of attributes (features) [attributes versus features]

q transformation of attributes (features)

q discretization and binarization of attributes (features)

q dimensionality reduction of feature space X
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Regression
Classification versus Regression

q X is a p-dimensional feature space or input space.

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .

Classification:
q C = {−1, 1} is a set of classes. (similarly: C = {0, 1}, C = {no, yes})
q c : X → C is the ideal classifier for X.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.
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Regression
Classification versus Regression

q X is a p-dimensional feature space or input space.

Customer 1
house owner yes
income (p.a.) 51 000 EUR
repayment (p.m.) 1 000 EUR
credit period 7 years
SCHUFA entry no
age 37
married yes
. . .

. . .

Customer n
house owner no
income (p.a.) 55 000 EUR
repayment (p.m.) 1 200 EUR
credit period 8 years
SCHUFA entry no
age ?
married yes
. . .

Classification:
q C = {−1, 1} is a set of classes. (similarly: C = {0, 1}, C = {no, yes})
q c : X → C is the ideal classifier for X.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

Regression:
q Y ⊆ R is the output space.

q yi is an observed credit line value for an xi ∈ X.

q D = {(x1, y1), . . . , (xn, yn)} ⊆ X × Y is a set of examples.
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Regression
The Linear Regression Model

q Given x predict a real-valued output under a linear model:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Assess goodness of fit as residual sum of squares:

RSS(w) =

n∑
i=1

(yi −wTxi)
2 (1)
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Regression
The Linear Regression Model

q Given x predict a real-valued output under a linear model:

y(x) = w0 +

p∑
j=1

wj · xj

q Vector notation with x0 = 1 and w = (w0, w1, . . . , wp)
T :

y(x) = wTx

q Assess goodness of fit as residual sum of squares:

RSS(w) =

n∑
i=1

(yi −wTxi)
2 (1)

q Estimate w by the least squares method:

ŵ = argmin
w∈Rp+1

RSS(w) (2)
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Remarks:

q From a statistical viewpoint, x = x1, . . . , xp and y form random variables (vectorial and scalar
respectively). Each feature vector, xi, and outcome, yi, is the result of a random experiment
and hence governed by a—usually unknown—probability distribution.

q The distributions of yi and (yi − y(xi)) are identical.

q Estimating w via RSS minimization is based on the following assumptions:
1. The random variables yi are statistically independent. Actually, the conditional

independence of the yi under xi is sufficient.

2. The means E(yi) lie on a straight line, known as the true (population) regression line:
E(yi) = wTxi

3. The probability distributions P (yi | xi) have the same variance.

q The three assumptions above are called the weak set (of assumptions). Along with a fourth
assumption about the distribution shape of yi they become the strong set of assumptions.

q In order to avoid cluttered notation, we won’t use different symbols to distinguish random
variables from ordinary variables. I.e., if x, x, y denote a (vectorial or scalar) random
variable this will become clear from the context.
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Regression
One-Dimensional Feature Space

x
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Regression
One-Dimensional Feature Space

x

explained

not explained
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Regression
One-Dimensional Feature Space

x

explained

not explained

xi

y(xi)

yi

RSS =

n∑
i=1

(yi − y(xi))
2
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Regression
One-Dimensional Feature Space

x

explained

not explained

xi

y(xi)

yi

w0

slope = w1

y(x) = w0 + w1 · x, RSS(w0, w1) =

n∑
i=1

(yi − w0 − w1 · xi)2
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Regression
One-Dimensional Feature Space

Minimize RSS(w0, w1) :

1.
∂

∂w0

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ0 =
1

n

n∑
i=1

yi −
w1

n

n∑
i=1

xi = ȳ − ŵ1 · x̄
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Regression
One-Dimensional Feature Space

Minimize RSS(w0, w1) :

1.
∂

∂w0

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ0 =
1

n

n∑
i=1

yi −
w1

n

n∑
i=1

xi = ȳ − ŵ1 · x̄

2.
∂

∂w1

n∑
i=1

(yi − w0 − w1 · xi)2 = 0

; . . . ; ŵ1 =

n∑
i=1

(xi − x̄) ·
n∑
i=1

(yi − ȳ)

n∑
i=1

(xi − x̄)2
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Regression
Higher-Dimensional Feature Space

q Recall Equation (1) : RSS(w) =
∑
xi∈D

(y(xi)−wTxi)
2

q Let X denote the n× (p + 1) matrix
where row i is the extended input vector (1 xTi ), xi ∈ D.

q Let y denote the n-vector of outputs in the training set D.
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Regression
Higher-Dimensional Feature Space

q Recall Equation (1) : RSS(w) =
∑
xi∈D

(y(xi)−wTxi)
2

q Let X denote the n× (p + 1) matrix
where row i is the extended input vector (1 xTi ), xi ∈ D.

q Let y denote the n-vector of outputs in the training set D.

; RSS(w) = (y −Xw)T (y −Xw)

RSS(w) is a quadratic function in p + 1 parameters.
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Regression
Higher-Dimensional Feature Space

q Recall Equation (1) : RSS(w) =
∑
xi∈D

(y(xi)−wTxi)
2

q Let X denote the n× (p + 1) matrix
where row i is the extended input vector (1 xTi ), xi ∈ D.

q Let y denote the n-vector of outputs in the training set D.

; RSS(w) = (y −Xw)T (y −Xw)

RSS(w) is a quadratic function in p + 1 parameters.

Minimize RSS(w) :
∂ RSS
∂w

= −2XT (y −Xw) = 0

∂2 RSS
∂w∂wT

= −2XTX
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Regression
Higher-Dimensional Feature Space

Minimize RSS(w) : (continued)

XT (y −Xw) = 0

⇔ XTXw = XTy

; ŵ = (XTX)−1XT︸ ︷︷ ︸
pseudo inverse of X

y If X has full column rank p + 1.
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Regression
Higher-Dimensional Feature Space

Minimize RSS(w) : (continued)

XT (y −Xw) = 0

⇔ XTXw = XTy

; ŵ = (XTX)−1XT︸ ︷︷ ︸
pseudo inverse of X

y If X has full column rank p + 1.
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Regression
Higher-Dimensional Feature Space

Minimize RSS(w) : (continued)

XT (y −Xw) = 0

⇔ XTXw = XTy

; ŵ = (XTX)−1XT︸ ︷︷ ︸
pseudo inverse of X

y If X has full column rank p + 1.

ŷ(xi) = xTi ŵ Regression function with least squares estimator ŵ.

ŷ = X ŵ The n-vector of fitted values at the training input.

= X (XTX)−1XTy

ML:II-45 Basics c©STEIN 2005-2012



Regression
Linear Regression for Classification (illustrated for p = 1)

Regression learns a real-valued function given as D = {(x1, y1), . . . , (xn, yn)}.

x

y(x)

y(x) = (w0 w1)
(

1
x

)
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Regression
Linear Regression for Classification (illustrated for p = 1)

Binary-valued (±1) functions are also real-valued.

x

1

-1
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Regression
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

x

1

-1

y(x)

y(x) = (w0 w1)
(

1
x

)
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Regression
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

x

1

-1

y(x)

The function sign(wTxi) is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)

ML:II-49 Basics c©STEIN 2005-2012



Regression
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

x

y(x)

+ +++

- --

1

-1

The function sign(wTxi) is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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Regression
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

x

y(x)

+ +++

- --

1

-1

- -- + +++
x'

0

The function sign(wTxi) is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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Regression
Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

sign(wTx) > 0sign(wTx) < 0

x

y(x)

+ +++

- --

1

-1

- -- + +++
x'

0

q The discrimination point, •, is defined by w0 + w1 · x′ = 0.

q For p = 2 we are given a discrimination line.

ML:II-52 Basics c©STEIN 2005-2012



Regression
Linear Regression for Classification (illustrated for p = 2)

x1

x2

1

-1
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Regression
Linear Regression for Classification (illustrated for p = 2)
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Regression
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+
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+
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+

+

+

+

+

-
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-
-
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-
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y(x) = (w0 w1 w2)

 1
x1

x2
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Regression
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
--

y(x1, x2)

--
-

-- -- - -

++
++

+
+

+

The function sign(wTxi) is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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Regression
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+

-
- -
-

-

-
-

-
-
--

y(x1, x2)

--
-

-- -- - -

++
++

+
+

+

(w1 w2)T
0

The function sign(wTxi) is likely to agree with yi = ±1.

q Regression: y(x) = wTx

q Classification: y(x) = sign(wTx)
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Regression
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.

x1

x2

1

-1

+ +
+

+
+

+

+ +
+
+

+
+

+

+
+

+

+

+

+

+++
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+
+

+
-
- -
-

-

-
-

-
-
----

-
-- -- - -

sign(wTx) > 0sign(wTx) < 0

(w1 w2)T

0

q The discrimination line, , is defined by w0 + w1 · x1 + w2 · x2 = 0.

q For p = 3 (p > 3) we are given a discriminating (hyper)plane.
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Regression
Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from D, where yi = ±1 ≈ y(xi) = wTxi.
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q The discrimination line, , is defined by w0 + w1 · x1 + w2 · x2 = 0.

q For p = 3 (p > 3) we are given a discriminating (hyper)plane.
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Regression
The Linear Model Structure

The components (variables, random variables) of the input vector x = (x1, . . . , xp)

can come from different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as logxj,
√
xj

3. basis expansions, such as xj = (x1)j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g = j)

5. interactions between variables, such as x3 = x1 · x2
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Regression
The Linear Model Structure

The components (variables, random variables) of the input vector x = (x1, . . . , xp)

can come from different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as logxj,
√
xj

3. basis expansions, such as xj = (x1)j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g = j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in the parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)
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Regression
The Linear Model Structure

The components (variables, random variables) of the input vector x = (x1, . . . , xp)

can come from different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as logxj,
√
xj

3. basis expansions, such as xj = (x1)j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g = j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in the parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)

q linear in the parameters: constant wj and additive combination
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Regression
The Linear Model Structure

The components (variables, random variables) of the input vector x = (x1, . . . , xp)

can come from different sources [Hastie et al. 2001] :

1. quantitative inputs

2. transformations of quantitative inputs, such as logxj,
√
xj

3. basis expansions, such as xj = (x1)j

4. encoding of a qualitative variable g, g ∈ {1, . . . , p}, as xj = I(g = j)

5. interactions between variables, such as x3 = x1 · x2

No matter the source of the xj, the model is still linear in the parameters w :

y(x) = w0 +

p∑
j=1

wj · φj(xj)

q linear in the parameters: constant wj and additive combination

q basis functions: input variables (space) become feature variables (space)
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Regression
Theoretical Properties of the Solution

Theorem 1 (Gauss-Markov)
Let D = {(x1, y1), . . . , (xn, yn)} be a set of examples to be fitted with a linear model
as y(x) = xTw. Within the class of linear unbiased estimators for w, the least
squares estimator ŵ has minimum variance, i.e., is most efficient.
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Regression
Theoretical Properties of the Solution

Theorem 1 (Gauss-Markov)
Let D = {(x1, y1), . . . , (xn, yn)} be a set of examples to be fitted with a linear model
as y(x) = xTw. Within the class of linear unbiased estimators for w, the least
squares estimator ŵ has minimum variance, i.e., is most efficient.

Related followup issues:

q mean and variance of ŵ

q proof of the Gauss-Markov theorem

q weak set and strong set of assumptions

q efficiency and consistency of unbiased estimators

q rank deficiencies, where the feature number p exceeds |D| = n

q relation of mean least squares and the maximum likelihood principle
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Chapter ML:II (continued)

II. Machine Learning Basics
q On Data
q Regression
q Concept Learning: Search in Hypothesis Space
q Concept Learning: Search in Version Space
q Measuring Performance
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Concept Learning: Search in Hypothesis Space
A Learning Task

Given is a set D of examples: days that are characterized by the six features
“Sky”, “Temperature”, “Humidity”, “Wind”, “Water”, and “Forecast”, along with a
statement (in fact: a feature) whether or not our friend will enjoy her favorite sport.

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong warm same yes
2 sunny warm high strong warm same yes
3 rainy cold high strong warm change no
4 sunny warm high strong cool change yes

q What is the concept behind “EnjoySport” ?

q What are possible hypotheses to formalize the concept “EnjoySport” ?
Similarly: What are the elements of the set or class “EnjoySport” ?
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Remarks:

q Domains of the features in the learning task:

Sky Temperature Humidity Wind Water Forecast

sunny warm normal strong warm same
rainy cold high weak cool change

cloudy

q A hypothesis is a finding or an insight gained by inductive reasoning. A hypothesis cannot
be inferred or proved by deductive reasoning.

q Within concept learning tasks, hypotheses are used to capture the target concept.
A hypothesis is justified inductively, by its means to represent a given set of observations,
which are called examples here.
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Concept Learning: Search in Hypothesis Space

Definition 1 (Concept, Hypothesis, Hypothesis Space)
A concept is a subset of an object set O and hence determines a subset of the
feature space X = α(O). Concept learning is the approximation of the ideal
classifier c : X → {0, 1} by a function y, where c is defined as follows:

c(x) =

{
1 if α−1(x) belongs to the concept
0 otherwise

A function h : X → {0, 1} is called hypothesis. A set H of hypotheses among which
the approximation function y is searched is called hypothesis space.

Objects

O

X
Feature space

Classes

C
γ

α
c  ≈ y
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Concept Learning: Search in Hypothesis Space

Usually, an example set D, D = {(x1, c(x1)), . . . , (xn, c(xn))}, contains positive
(c(x) = 1) and negative (c(x) = 0) examples. [Learning Task]

Definition 2 (Hypothesis-Fulfilling, Consistency)
An example (x, c(x)) fulfills a hypothesis h iff h(x) = 1. A hypothesis h is consistent
with an example (x, c(x)) iff h(x) = c(x).

A hypothesis h is consistent with a set D of examples, denoted as
consistent(h,D), iff:

∀(x, c(x)) ∈ D : h(x) = c(x)
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Remarks:

q The symbol “Iff” or “iff” is an abbreviation for “If and only if”, which means “necessary and
sufficient”. [Wolfram]

q The following terms are used synonymously: target concept, target function, classifier, ideal
classifier. [ML Introduction]

q The fact that a hypothesis is consistent with an example can also be described the other
way round: an example is consistent with a hypothesis.

q Given an example (x, c(x)), notice the difference between (1) hypothesis-fulfilling and
(2) being consistent with a hypothesis. The former asks for h(x) = 1, disregarding the actual
target concept value c(x). The latter asks for the equivalence between the target concept
c(x) and the hypothesis h(x).

q The consistency of h can be analyzed with respect to a single example or a set D of
examples. Given the latter, consistency requires for all elements in D that h(x) = 1 iff
c(x) = 1. This is equivalent with the condition that h(x) = 0 iff c(x) = 0 for all x ∈ D.

q Learning means to determine a hypothesis h ∈ H that is consistent with D.
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Concept Learning: Search in Hypothesis Space
A Learning Task (continued)

Structure of a hypothesis h:

1. conjunction of feature-value pairs

2. three kinds of values: literal, ? (wildcard), ⊥ (contradiction)

A hypothesis in the example [Learning Task] : 〈 sunny, ?, ?, strong, ?, same 〉
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Concept Learning: Search in Hypothesis Space
A Learning Task (continued)

Structure of a hypothesis h:

1. conjunction of feature-value pairs

2. three kinds of values: literal, ? (wildcard), ⊥ (contradiction)

A hypothesis in the example [Learning Task] : 〈 sunny, ?, ?, strong, ?, same 〉

Definition 3 (Maximally Specific / General Hypothesis)
The hypotheses s0(x) ≡ 0 and g0(x) ≡ 1 are called maximally specific and
maximally general hypothesis respectively. No x ∈ X fulfills s0, and all x ∈ X
fulfill g0.

Maximally specific / general hypothesis in the example [Learning Task] :

q s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉

q g0 = 〈 ?, ?, ?, ?, ?, ? 〉
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Concept Learning: Search in Hypothesis Space
Ordering of Hypotheses

Feature space X Hypothesis space H
specific

general

h1

x4

h2

h4

x1

h1-fulfilling

h4-fulfilling

h2-fulfilling

x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, ?, normal, ?, ?, ? 〉
h2 = 〈 sunny, ?, ?, ?, warm, ? 〉

x4 = (sunny, warm, high, strong, cool, change) h4 = 〈 sunny, ?, ?, ?, ?, ? 〉

ML:II-74 Basics c©STEIN 2005-2012



Concept Learning: Search in Hypothesis Space
Ordering of Hypotheses

Definition 4 (More General Relation)
Let X be a feature space and let h1 and h2 be two boolean-valued functions with
domain X. Then function h1 is called more general than function h2, denoted as
h1 ≥g h2, iff:

∀x ∈ X : ( h2(x) = 1 implies h1(x) = 1 )

h1 is called stricly more general than h2, denoted as h1 >g h2, iff:

(h1 ≥g h2) and (h2 6≥g h1)
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Concept Learning: Search in Hypothesis Space
Ordering of Hypotheses

Definition 4 (More General Relation)
Let X be a feature space and let h1 and h2 be two boolean-valued functions with
domain X. Then function h1 is called more general than function h2, denoted as
h1 ≥g h2, iff:

∀x ∈ X : ( h2(x) = 1 implies h1(x) = 1 )

h1 is called stricly more general than h2, denoted as h1 >g h2, iff:

(h1 ≥g h2) and (h2 6≥g h1)

About the maximally specific / general hypothesis:

q s0 is minimum and g0 is maximum with regard to ≥g: no hypothesis is more
specific wrt. s0, and no hypothesis is more general wrt. g0.

q We will consider only hypothesis spaces that contain s0 and g0.
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Remarks:

q If h1 is more general than h2, then h2 can also be called being more specific than h1.

q ≥g and >g are independent of a target concept c. They depend only on the fact that
examples fulfill a hypothesis, i.e., whether h(x) = 1. They require not that c(x) = 1.

q The ≥g-relation defines a partial ordering on the hypothesis space H : ≥g is reflexive,
anti-symmetric, and transitive. The ordering is partial since (unlike in a total ordering) not all
hypothesis pairs stand in the relation. I.e., we are given hypotheses hi, hj, for which neither
hi ≥g hj nor hj ≥g hi holds, such as the hypotheses h1 and h2 in the hypothesis space.
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Remarks: (continued)

q The semantics of the implication, in words “a implies b”, denoted as a→ b, is as follows.
a→ b is true if either (1) a is true and b is true, or (2) if a is false and b is true, or (3) if a is
false and b is false—in short: “if a is true then b is true as well”, or, “the truth of a implies the
truth of b”. The connective “→” is the causality connective.

q In particular does the connective “→” not stand for “entails”, which would be denoted as
either⇒ or |=. Logical entailment (synonymously: logical inference, logical deduction)
allows to infer or to proof a fact. From the fact h2(x) = 1, however, we cannot infer or proof
the fact h1(x) = 1.

q Here, in the definition, the implication specifies a condition that is to be fulfilled by the
definiendum (= the thing to be defined). The implication is used to check whether or not a
thing falls under the definition: each pair of functions, h1, h2, falls under the definition of the
≥g-relation (i.e., stands in the ≥g-relation) if and only if the implication
h2(x) = 1→ h1(x) = 1 is true for all x ∈ X.

q In a nutshell: distinguish between “α requires β”, denoted as α→ β, on the one hand, and
“from α follows β”, denoted as α⇒ β, on the other hand. α→ β is considered as a
sentence from the object language (language of discourse) and stipulates a computing
operation, whereas α⇒ β is a sentence from the meta language and makes an assertion
about the sentence α→ β, namely: “α→ β is a tautology”.

q Finally, consider the following sentences from the object language, which are synonymous:
“α→ β”, “α implies β”, “if α then β”, “α causes β”, “α requires β”, “β involves α”.
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Concept Learning: Search in Hypothesis Space
Inductive Learning Hypothesis

“Any hypothesis found to approximate the target function well over a
sufficiently large set of training examples will also approximate the
target function well over other unobserved examples.”

[p.23, Mitchell 1997]
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Concept Learning: Search in Hypothesis Space
Find-S Algorithm

1. h = s0 // h is a maximally specific hypothesis in H.

2. FOREACH (x, c(x)) ∈ D DO
IF c(x) = 1 THEN // Use only positive examples.

IF h(x) = 0 DO
h = min_generalization(h,x) // Relax hypothesis h wrt. x.

ENDIF

ENDIF
ENDDO

3. return(h)

ML:II-80 Basics c©STEIN 2005-2012



Remarks:

q Another term for “generalization” is “relaxation”.

q The function min_generalization(h,x) returns a hypothesis h′ that is minimally generalized
wrt. h and that is consistent with (x, 1). Denoted formally: h′ ≥g h and h′(x) = 1 and there is
no h′′ with h′ >g h

′′ ≥g h and h′′(x) = 1.

q The relaxation of h given x, min_generalization(h,x), may not be deterministic. In such a
case, one of the alternatives has to be chosen.

q If a hypothesis h needs to be relaxed towards some h′ where h′ 6∈ H, the maximally general
hypothesis g0 ≡ 1 can be added to H.

q Similarly to min_generalization(h,x), a function min_specialization(h,x) can be defined,
which returns a minimally specialized, consistent hypotheses for negative examples.

ML:II-81 Basics c©STEIN 2005-2012



Concept Learning: Search in Hypothesis Space
Find-S Algorithm

See the example set D for the concept EnjoySport .

Feature space X Hypothesis space H
specific

general

h1

x1

h0

h0 = s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉
x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, warm, normal, strong, warm, same 〉
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Concept Learning: Search in Hypothesis Space
Find-S Algorithm

See the example set D for the concept EnjoySport .

Feature space X Hypothesis space H
specific

general

h1

x1

h0

h2,3
x2

h0 = s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉
x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, warm, normal, strong, warm, same 〉
x2 = (sunny, warm, high, strong, warm, same) h2 = 〈 sunny, warm, ?, strong, warm, same 〉
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Concept Learning: Search in Hypothesis Space
Find-S Algorithm

See the example set D for the concept EnjoySport .

Feature space X Hypothesis space H
specific

general

h1

x1

h0

h2,3
x2

x3

h0 = s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉
x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, warm, normal, strong, warm, same 〉
x2 = (sunny, warm, high, strong, warm, same) h2 = 〈 sunny, warm, ?, strong, warm, same 〉
x3 = (rainy, cold, high, strong, warm, change) h3 = 〈 sunny, warm, ?, strong, warm, same 〉
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Concept Learning: Search in Hypothesis Space
Find-S Algorithm

See the example set D for the concept EnjoySport .

Feature space X Hypothesis space H
specific

general

h1

x1

h0

h2,3
x2

x3

h4
x4

h0 = s0 = 〈 ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ 〉
x1 = (sunny, warm, normal, strong, warm, same) h1 = 〈 sunny, warm, normal, strong, warm, same 〉
x2 = (sunny, warm, high, strong, warm, same) h2 = 〈 sunny, warm, ?, strong, warm, same 〉
x3 = (rainy, cold, high, strong, warm, change) h3 = 〈 sunny, warm, ?, strong, warm, same 〉
x4 = (sunny, warm, high, strong, cool, change) h4 = 〈 sunny, warm, ?, strong, ?, ? 〉

ML:II-85 Basics c©STEIN 2005-2012



Concept Learning: Search in Hypothesis Space
Discussion of the Find-S Algorithm

1. Did we learn the only concept—or are there others?

2. Why should one pursuit the maximally specific hypothesis?

3. What if several maximally specific hypotheses exist?

4. Inconsistencies in the example set D remain undetected.

5. An inappropriate hypothesis structure or space H remains undetected.
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Concept Learning: Search in Version Space

Definition 5 (Version Space)
The version space VH,D of an hypothesis space H and a example set D is
comprised of all hypotheses h ∈ H that are consistent with a set D of examples:

VH,D = {h | h ∈ H ∧ ( ∀(x, c(x)) ∈ D : h(x) = c(x) ) }
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Concept Learning: Search in Version Space

Definition 5 (Version Space)
The version space VH,D of an hypothesis space H and a example set D is
comprised of all hypotheses h ∈ H that are consistent with a set D of examples:

VH,D = {h | h ∈ H ∧ ( ∀(x, c(x)) ∈ D : h(x) = c(x) ) }

Illustration of VH,D for the example set D:

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G
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Remarks:

q The term “version space” reflects the fact that VH,D represents the set of all consistent
versions of the target concept that is encoded in D.

q A naive approach for the construction of the version space is the following: (1) enumeration
of all members of H, and, (2) elimination of those h ∈ H for which h(x) 6= c(x) holds. This
approach presumes a finite hypothesis space H and is feasible only for toy problems.
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Concept Learning: Search in Version Space

Definition 6 (Boundary Sets of a Version Space)
Let H be hypothesis space and let D be set of examples. Then, based on the
≥g-relation, the set of maximally general hypotheses, G, is defined as follows:

{g | g ∈ H ∧ consistent(g,D) ∧ ( 6 ∃g′ : g′ ∈ H ∧ g′ >g g ∧ consistent(g′, D)) }

Similarly, the set of maximally specific (i.e., minimally general) hypotheses, S, is
defined as follows:

{s | s ∈ H ∧ consistent(s,D) ∧ ( 6 ∃s′ : s′ ∈ H ∧ s >g s′ ∧ consistent(s′, D)) }
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Concept Learning: Search in Version Space

Definition 6 (Boundary Sets of a Version Space)
Let H be hypothesis space and let D be set of examples. Then, based on the
≥g-relation, the set of maximally general hypotheses, G, is defined as follows:

{g | g ∈ H ∧ consistent(g,D) ∧ ( 6 ∃g′ : g′ ∈ H ∧ g′ >g g ∧ consistent(g′, D)) }

Similarly, the set of maximally specific (i.e., minimally general) hypotheses, S, is
defined as follows:

{s | s ∈ H ∧ consistent(s,D) ∧ ( 6 ∃s′ : s′ ∈ H ∧ s >g s′ ∧ consistent(s′, D)) }

Theorem 1 (Version Space Representation)
Let X be a feature space and let H be a set of boolean-valued functions with
domain X. Moreover, let c : X → {0, 1} be a target concept and let D be a set of
examples of the form (x, c(x)). Then, based on the ≥g-relation, each member of
the version space VH,D lies in between two members of G and S respectively:

VH,D = {h | h ∈ H ∧ (∃g ∈ G ∃s ∈ S : g ≥g h ≥g s) }
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Concept Learning: Search in Version Space
Candidate Elimination Algorithm [Mitchell 1997]

q Initialization: G = {g0}, S = {s0}

q If x is a positive example
q Remove from G any hypothesis that is not consistent with x

q For each hypothesis s in S that is not consistent with x

q Remove s from S

q Add to S all minimal generalizations h of s such that
1. h is consistent with x and
2. some member of G is more general than h

q Remove from S any hypothesis that is less specific than another hypothesis in S

q If x is a negative example
q Remove from S any hypothesis that is not consistent with x

q For each hypothesis g in G that is not consistent with x

q Remove g from G

q Add to G all minimal specializations h of g such that
1. h is consistent with x and
2. some member of S is more specific than h

q Remove from G any hypothesis that is less general than another hypothesis in G
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Remarks:

q The basic idea of Candidate Elimination is as follows.
– A maximally specific hypothesis s ∈ S restricts the positive examples in first instance.

Hence, s must be relaxed (= generalized) with regard to each positive example that is
not consistent with s.

– Conversely, a maximally general hypothesis g ∈ G tolerates the negative examples in
first instance. Hence, g must be constrained (= specialized) with regard to each
negative example that is not consistent with g.
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Concept Learning: Search in Version Space
Candidate Elimination Algorithm (pseudo code)

1. G = {g0} // G is the set of maximally general hypothesis in H.
S = {s0} // S is the set of maximally specific hypothesis in H.

2. FOREACH (x, c(x)) ∈ D DO
IF c(x) = 1 THEN // x is a positive example.
FOREACH g ∈ G DO IF g(x) 6= 1 THEN G = G \ {g} ENDDO
FOREACH s ∈ S DO
IF s(x) 6= 1 THEN
S = S \ {s}, S+ = min_generalizations(s,x)
FOREACH s ∈ S+ DO IF (∃g ∈ G : g ≥g s) THEN S = S ∪ {s} ENDDO
FOREACH s ∈ S DO IF (∃s′ ∈ S : s′ 6= s ∧ s′ ≥g s) THEN S = S \ {s} ENDDO

ENDDO
ELSE // x is a negative example.
FOREACH s ∈ S DO IF s(x) 6= 0 THEN S = S \ {s} ENDDO
FOREACH g ∈ G DO
IF g(x) 6= 0 THEN
G = G \ {g}, G− = min_specializations(g,x)
FOREACH g ∈ G− DO IF (∃s ∈ S : g ≥g s) THEN G = G ∪ {g} ENDDO
FOREACH g ∈ G DO IF (∃g′ ∈ G : g′ 6= g ∧ g ≥g g

′) THEN G = G \ {g} ENDDO
ENDDO

ENDIF
ENDDO

3. return(G,S)
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Concept Learning: Search in Version Space
Candidate Elimination Algorithm (pseudo code)

1. G = {g0} // G is the set of maximally general hypothesis in H.
S = {s0} // S is the set of maximally specific hypothesis in H.

2. FOREACH (x, c(x)) ∈ D DO
IF c(x) = 1 THEN // x is a positive example.
FOREACH g ∈ G DO IF g(x) 6= 1 THEN G = G \ {g} ENDDO
FOREACH s ∈ S DO
IF s(x) 6= 1 THEN
S = S \ {s}, S+ = min_generalizations(s,x)
FOREACH s ∈ S+ DO IF (∃g ∈ G : g ≥g s) THEN S = S ∪ {s} ENDDO
FOREACH s ∈ S DO IF (∃s′ ∈ S : s′ 6= s ∧ s′ ≥g s) THEN S = S \ {s} ENDDO

ENDDO
ELSE // x is a negative example.
FOREACH s ∈ S DO IF s(x) 6= 0 THEN S = S \ {s} ENDDO
FOREACH g ∈ G DO
IF g(x) 6= 0 THEN
G = G \ {g}, G− = min_specializations(g,x)
FOREACH g ∈ G− DO IF (∃s ∈ S : g ≥g s) THEN G = G ∪ {g} ENDDO
FOREACH g ∈ G DO IF (∃g′ ∈ G : g′ 6= g ∧ g ≥g g

′) THEN G = G \ {g} ENDDO
ENDDO

ENDIF
ENDDO

3. return(G,S)
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Concept Learning: Search in Version Space
Candidate Elimination Algorithm (illustration)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0
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Concept Learning: Search in Version Space
Candidate Elimination Algorithm (illustration)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

{ < sunny, warm, normal, strong, warm, same > }

G1,

S1

x1 = (sunny, warm, normal, strong, warm, same) EnjoySport(x1) = 1
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Concept Learning: Search in Version Space
Candidate Elimination Algorithm (illustration)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

{ < sunny, warm, normal, strong, warm, same > }

G1,

S1

{ < sunny, warm, ?, strong, warm, same > } S2,

G2

x1 = (sunny, warm, normal, strong, warm, same) EnjoySport(x1) = 1
x2 = (sunny, warm, high, strong, warm, same) EnjoySport(x2) = 1
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Concept Learning: Search in Version Space
Candidate Elimination Algorithm (illustration)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

{ < sunny, warm, normal, strong, warm, same > }

G1,

S1

{ < sunny, warm, ?, strong, warm, same > } S2,

G2

{ < sunny, ?, ?, ?, ?, ? >, < ?, warm, ?, ?, ?, ? >, < ?, ?, ?, ?, ?, same > } G3

S3

x1 = (sunny, warm, normal, strong, warm, same) EnjoySport(x1) = 1
x2 = (sunny, warm, high, strong, warm, same) EnjoySport(x2) = 1
x3 = (rainy, cold, high, strong, warm, change) EnjoySport(x3) = 0
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Concept Learning: Search in Version Space
Candidate Elimination Algorithm (illustration)

{ < ?, ?, ?, ?, ?, ? > }

{ < ⊥, ⊥, ⊥, ⊥, ⊥, ⊥ > }

G0,

S0

{ < sunny, warm, normal, strong, warm, same > }

G1,

S1

{ < sunny, warm, ?, strong, warm, same > } S2,

G2

{ < sunny, ?, ?, ?, ?, ? >, < ?, warm, ?, ?, ?, ? >, < ?, ?, ?, ?, ?, same > } G3

S3

{ < sunny, ?, ?, ?, ?, ? >, < ?, warm, ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }

G4

S4

x1 = (sunny, warm, normal, strong, warm, same) EnjoySport(x1) = 1
x2 = (sunny, warm, high, strong, warm, same) EnjoySport(x2) = 1
x3 = (rainy, cold, high, strong, warm, change) EnjoySport(x3) = 0
x4 = (sunny, warm, high, strong, cool, change) EnjoySport(x4) = 1
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Concept Learning: Search in Version Space
Discussion of the Candidate Elimination Algorithm

1. What about selecting examples from D according to a certain strategy?
Keyword: Active Learning

2. What are partially learned concepts and how to exploit them?
Keyword: Ensemble Classification

3. The version space as defined here is “biased”. What does this mean?

4. Will Candidate Elimination converge towards the correct hypothesis?

5. When does one end up with an empty version space?
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Concept Learning: Search in Version Space
Question 1: Selecting Examples from D

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Next Example:

xc = (sunny, warm, normal, light, warm, same)
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Concept Learning: Search in Version Space
Question 1: Selecting Examples from D

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Next Example:

xc = (sunny, warm, normal, light, warm, same)

Observation:

Irrespective the value of c(xc), the example (xc, c(xc)) will be consistent with three
of the six hypotheses. It follows:

q If EnjoySport(xc) = 1 S can be further generalized.

q If EnjoySport(xc) = 0 G can be further specialized.
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Concept Learning: Search in Version Space
Question 2: Partially Learned Concepts

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Classify examples using the shown version space:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

(a) sunny warm normal strong cool change 6+ : 0–
(b) rainy cold normal light warm same 0+ : 6–
(c) sunny warm normal light warm same 3+ : 3–
(d) sunny cold normal strong warm same 2+ : 4–
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Concept Learning: Search in Version Space
Question 2: Partially Learned Concepts

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Classify examples using the shown version space:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

(a) sunny warm normal strong cool change 6+ : 0–
(b) rainy cold normal light warm same 0+ : 6–
(c) sunny warm normal light warm same 3+ : 3–
(d) sunny cold normal strong warm same 2+ : 4–

ML:II-105 Basics c©STEIN 2005-2012



Concept Learning: Search in Version Space
Question 2: Partially Learned Concepts

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Classify examples using the shown version space:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

(a) sunny warm normal strong cool change 6+ : 0–
(b) rainy cold normal light warm same 0+ : 6–
(c) sunny warm normal light warm same 3+ : 3–
(d) sunny cold normal strong warm same 2+ : 4–
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Concept Learning: Search in Version Space
Question 2: Partially Learned Concepts

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Classify examples using the shown version space:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

(a) sunny warm normal strong cool change 6+ : 0–
(b) rainy cold normal light warm same 0+ : 6–
(c) sunny warm normal light warm same 3+ : 3–
(d) sunny cold normal strong warm same 2+ : 4–
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Concept Learning: Search in Version Space
Question 2: Partially Learned Concepts

{ < sunny, ?, ?, ?, ?, ? > , < ?, warm , ?, ?, ?, ? > }

< sunny, ?, ?, strong, ?, ? > < sunny, warm, ?, ?, ?, ? > < ?, warm, ?, strong, ?, ? >

{ < sunny, warm, ?, strong, ?, ? > }S

G

Classify examples using the shown version space:

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

(a) sunny warm normal strong cool change 6+ : 0–
(b) rainy cold normal light warm same 0+ : 6–
(c) sunny warm normal light warm same 3+ : 3–
(d) sunny cold normal strong warm same 2+ : 4–
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Concept Learning: Search in Version Space
Question 3: Inductive Bias

A different set of examples D′ :

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong cool change yes
2 sunny warm normal light warm same yes

Ü S = { 〈 sunny, warm, normal, ?, ?, ? 〉 }
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Concept Learning: Search in Version Space
Question 3: Inductive Bias

A different set of examples D′ :

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong cool change yes
2 sunny warm normal light warm same yes

Ü S = { 〈 sunny, warm, normal, ?, ?, ? 〉 }

In particular, the following example is classified as positive:

x = (sunny, warm, normal, strong, warm, same)

Discussion:

q What if x were a negative example?

q What assumptions about the target concept are met a-priori by the learner?
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Concept Learning: Search in Version Space
Question 3: Inductive Bias (continued)

A different set of examples D′′ :

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong cool change yes
2 cloudy warm normal strong cool change yes

Ü S = { 〈 ?, warm, normal, strong, cool, change 〉 }
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Concept Learning: Search in Version Space
Question 3: Inductive Bias (continued)

A different set of examples D′′ :

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong cool change yes
2 cloudy warm normal strong cool change yes

Ü S = { 〈 ?, warm, normal, strong, cool, change 〉 }

+
3 rainy warm normal strong cool change no

Ü S = { }
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Concept Learning: Search in Version Space
Question 3: Inductive Bias (continued)

A different set of examples D′′ :

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong cool change yes
2 cloudy warm normal strong cool change yes

Ü S = { 〈 ?, warm, normal, strong, cool, change 〉 }

+
3 rainy warm normal strong cool change no

Ü S = { }

Observation:

The hypothesis space H should be constructed in a way to contain other possible
concepts, e.g. including:

〈 sunny, ?, ?, ?, ?, ? 〉 ∨ 〈 cloudy, ?, ?, ?, ?, ? 〉
ML:II-113 Basics c©STEIN 2005-2012



Concept Learning: Search in Version Space
Question 3: Inductive Bias (continued)

q A learning algorithm that considers all possible hypotheses as equally likely
makes no a-priori assumption with regard to the target concept.

q A learning algorithm without a-priori assumptions has no “inductive bias”.

“The policy by which an algorithm generalizes from observed training examples to
classify unseen instances is its inductive bias. [. . . ] Inductive bias is the set of
assumptions that, together with the training data, deductively justify the classification
by the learner to future instances.”

[p.63, Mitchell 1997]
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Concept Learning: Search in Version Space
Question 3: Inductive Bias (continued)

q A learning algorithm that considers all possible hypotheses as equally likely
makes no a-priori assumption with regard to the target concept.

q A learning algorithm without a-priori assumptions has no “inductive bias”.

“The policy by which an algorithm generalizes from observed training examples to
classify unseen instances is its inductive bias. [. . . ] Inductive bias is the set of
assumptions that, together with the training data, deductively justify the classification
by the learner to future instances.”

[p.63, Mitchell 1997]

Ü A learning algorithm without inductive bias has no directive to classify
unseen examples. Put another way: the learner cannot generalize.

Ü A learning algorithm without inductive bias will only memorize.

Which of the two algorithms Finds-S and Candidate Elimination has a stronger
inductive bias?
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Chapter ML:II (continued)

II. Machine Learning Basics
q On Data
q Regression
q Concept Learning: Search in Hypothesis Space
q Concept Learning: Search in Version Space
q Measuring Performance
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Measuring Performance
Misclassification

Definition 7 (True Misclassification Rate)
Let X be a feature space with a finite number of elements. Moreover, let C be a
set of classes, let y : X → C be a classifier, and let c be the target concept to be
learned. Then the true misclassification rate, denoted as Err ∗(y), is defined as
follows:

Err ∗(y) =
|{x ∈ X : c(x) 6= y(x)}|

|X|
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Measuring Performance
Misclassification

Definition 7 (True Misclassification Rate)
Let X be a feature space with a finite number of elements. Moreover, let C be a
set of classes, let y : X → C be a classifier, and let c be the target concept to be
learned. Then the true misclassification rate, denoted as Err ∗(y), is defined as
follows:

Err ∗(y) =
|{x ∈ X : c(x) 6= y(x)}|

|X|

Problem:

q Usually c is unknown.

Solution:

q Estimation of Err ∗(y), by evaluating y on a test set for whose feature vectors
c is known.
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Remarks:

q The English word “rate” can be used to denote both the mathematical concept of a flow
figure (a change of a quantity per time unit) as well as the mathematical concept of a
portion, a percentage, or a ratio, which has a stationary (= time-independent) semantics.
This latter semantics is meant here when talking about the misclassification rate.

q Unfortunately, the German word “Rate” is often (mis)used to denote the mathematical
concept of a portion, a percentage, or a ratio. Taking a precise mathematical standpoint, the
correct German words are “Anteil” or “Quote”. I.e., a semantically correct translation of
misclassification rate is “Missklassifikationsanteil”, and not “Missklassifikationsrate”.
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Measuring Performance
Misclassification (continued)

Probabilistic foundation:

q For X ′ ⊆ X and j ∈ C let P (X ′, j) denote the probability that a randomly
drawn x ∈ X is member of X ′ and belongs to class j.

q P is a probability measure on X × C.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples whose
elements are drawn independently from each other and according to the
(same, identical) distribution P .

Let (x0, c(x0)) be an example drawn according to P and independently of D, and
let y : X → C be a classifier learned on the basis of D. Then we agree on:

1. P (x0 ∈ X ′, c(x0) = j) = P (X ′, j)

2. Err ∗(y) = P (c(x0) 6= y(x0) | D)
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Remarks:

q Let A and B denote two events. Then the following expressions are syntactic variants, i.e.,
they are semantically equivalent: P (A,B), P (A and B), P (A ∧B)

q The elements in D are considered as random variables that are both independent of each
other and identically distributed. This property of a set of random variables is abbreviated
with “i.i.d.”
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Measuring Performance
Misclassification (continued)

Estimation of Err ∗(y) based on a finite sample X ′ ⊆ X:

Err (y,X ′) =
|{x ∈ X ′ : c(x) 6= y(x)}|

|X ′|

Requirement:

q c(x) must be known. Hence, X ′ ⊆ {x ∈ X : (x, c(x)) ∈ D}
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Measuring Performance
Training Error

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

q Dtr = D is the training set.

q y : X → C is a classifier learned on the basis of Dtr.

Training error = misclassification rate with respect to Dtr:

Err (y,Dtr) =
|{(x, c(x)) ∈ Dtr : c(x) 6= y(x)}|

|Dtr|

ML:II-123 Basics c©LETTMANN/STEIN 2005-2012



Measuring Performance
Training Error

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

q Dtr = D is the training set.

q y : X → C is a classifier learned on the basis of Dtr.

Training error = misclassification rate with respect to Dtr:

Err (y,Dtr) =
|{(x, c(x)) ∈ Dtr : c(x) 6= y(x)}|

|Dtr|

Problem:

q Err (y,Dtr) is based on examples that are also exploited to learn y.

Ü Err (y,Dtr) quantifies memorization but not generalization capability of y.

Ü Err (y,Dtr) is an optimistic estimation, i.e.,
it is constantly lower compared to an application of y in the wild.
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Measuring Performance
Holdout Estimation

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

q Dtr ⊂ D is the training set.

q y : X → C is a classifier learned on the basis of Dtr.

q Dts ⊂ D with Dts ∩Dtr = ∅ is a test set.

Holdout estimation = misclassification rate with respect to Dts :

Err (y,Dts) =
|{(x, c(x)) ∈ Dts : c(x) 6= y(x)}|

|Dts|
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Measuring Performance
Holdout Estimation

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

q Dtr ⊂ D is the training set.

q y : X → C is a classifier learned on the basis of Dtr.

q Dts ⊂ D with Dts ∩Dtr = ∅ is a test set.

Holdout estimation = misclassification rate with respect to Dts :

Err (y,Dts) =
|{(x, c(x)) ∈ Dts : c(x) 6= y(x)}|

|Dts|

Requirements:

q Dtr and Dts must be drawn i.i.d.

q Dtr and Dts must have similar sizes.
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Remarks:

q A typical value for splitting D into training set Dtr and test set Dts is 2:1.

q When splitting D into Dtr and Dts one has to ensure that the underlying distribution is
maintained. Keywords: Stratification, Sample Selection Bias
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Measuring Performance
Cross Validation: k-Fold

Improved approach for small sets D :

q Splitting of D into k disjoint sets D1, . . . , Dk of similar size.

q For i = 1, . . . , k do:

1. yi : X → C is a classifier learned on the basis of D \Di

2. Err (yi, Di) =
|{(x, c(x) ∈ Di : yi(x) 6= c(x)}|

|Di|

q y : X → C is a classifier learned on the basis of D.

Cross-validated misclassification rate:

Err cv(y,D, k) =
1

k

k∑
i=1

Err (yi, Di)
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Remarks:

q Rationale: For large k the set D \Di is of similar size as D. Hence Err ∗(yi) is close
to Err ∗(y).

q For the construction of tree classifiers, tenfold cross-validation has been reported to give
good results. [Breiman]
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Measuring Performance
Cross Validation: Leave One Out

The special case of cross validation with k = n :

q Determine the cross-validated misclassification rate for Di = D \ {(xi, c(xi))},
k ∈ {1, . . . , n} .
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Measuring Performance
Cross Validation: Leave One Out

The special case of cross validation with k = n :

q Determine the cross-validated misclassification rate for Di = D \ {(xi, c(xi))},
k ∈ {1, . . . , n} .

Problems:

q High computational effort if D is large.

q Singleton test sets (|Di| = 1) are not stratified but contain only one class.

q Pessimistic error estimation becomes possible.
Consider the learning algorithm “Majority decision on the basis of D”, which
leads for |C| = 2 and stratified samples to a misclassification rate of 1.
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Measuring Performance
Bootstrapping

The idea of a multiple exploitation of D:

q For i = 1, . . . , k do:

1. Form training set Di by drawing n examples from D with replacement.

2. yi : X → C is a classifier learned on the basis of Di

3. Err (yi, D \Di) =
|{(x, c(x)) ∈ D \Di : yi(x) 6= c(x)}|

|D \Di|

q y : X → C is a classifier learned on the basis of D.

Bootstrapped misclassification rate:

Err bt(y,D) =
1

k

k∑
i=1

Err (yi, D \Di)
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Remarks:

q The probability that an example is not considered is (1− 1/n)n. As a consequence, the
probability that an example is considered at least once is 1− (1− 1/n)n.

q If n is large then 1− (1− 1/n)n ≈ 1− 1/e ≈ 0.632. I.e., each training set contains about
63.2% of the examples in D.

q The classifiers y1, . . . , yk can be used in a combined fashion as ensemble where the class is
determined by means of a majority decision:

y(x) = argmax
j∈C

|{i ∈ {1, . . . , k} : yi(x) = j}|

q For the construction of tree classifiers, bootstrapping has been reported to improve the
misclassification rate about 20% - 47% compared to a standard approach.
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Measuring Performance
Misclassification Cost

Use of a cost measure for the misclassification of a feature vector x in class c′

instead of in class c :

cost(c′ | c)

{
≥ 0 if c′ 6= c

= 0 otherwise

Estimation of Err ∗cost(y) given a finite subset X ′ ⊆ X:

Err cost(y,X
′) =

∑
x∈X ′

cost(y(x) | c(x))

Requirement:

q c(x) must be known. I.e., X ′ ⊆ {x ∈ X : (x, c(x)) ∈ D}

The misclassification rate, Err , is a special case of Err cost with cost 1.
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