Chapter ML:II

- II. Machine Learning Basics
 - On Data
 - □ Regression
 - □ Concept Learning: Search in Hypothesis Space
 - Concept Learning: Search in Version Space
 - □ Measuring Performance

- □ An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.
- An attribute A is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

		ID	Check	Status	Income	Risk
	(1	+	single	125 000	No
		2	-	married	100 000	No
		3	-	single	70 000	No
		4	+	married	120 000	No
cts {	5	-	divorced	95 000	Yes	
	6	-	married	60 000	No	
	7	+	divorced	220 000	No	
	8	-	single	85 000	Yes	
		9	-	married	75 000	No
		10	-	single	90 000	Yes

Attributes

Objects

□ An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.

- An attribute A is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

		ID	Check	Status	Income	Risk	
	(1	+	single	125 000	No	
		2	-	married	100 000	No	
		3	-	single	70 000	No	
		4	+	married	120 000	No	
	5	-	divorced	95 000	Yes		
)	6	-	married	60 000	No	
	7	+	divorced	220 000	No		
	8	-	single	85 000	Yes		
		9	-	married	75 000	No	
		10	-	single	90 000	Yes	

Attributes

Objects

□ An object $o \in O$ is described by a set of attributes. An object is also known as record, point, case, sample, entity, or instance.

- An attribute A is a property of an object.
 An attribute is also known as variable, field, characteristic, or feature.
- A measurement scale is a system (often a convention) of assigning a numerical or symbolic value to an attribute of an object.

		ID	Check	Status	Income	Risk
	(1	+	single	125 000	No
		2	-	married	100 000	No
		3	-	single	70 000	No
		4	+	married	120 000	No
Objecte		5	-	divorced	95 000	Yes
Objects 3		6	-	married	60 000	No
		7	+	divorced	220 000	No
		8	-	single	85 000	Yes
		9	-	married	75 000	No
		10	-	single	90 000	Yes

Attributes

- □ Attribute values may vary from one object to another or one time to another.
- The same attribute can be mapped to different attribute values.
 Example: height can be measured in feet or meters.
- Different attributes can be mapped to the same set of values.
 Example: attribute values for ID and age are integers.

The way an attribute is measured may not match the attribute's properties:

Measuring lengths	1	∢	 1
	3	◄	 2
	7	∢	 3
	8	∢	 4
	10	◄	 5

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects $= \neq$	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
	ordinal	enough information to order objects < > ≤ ≥	median, percentiles, rank correlation, run tests, sign tests	hardness of minerals, grades, street numbers, quality: {good, better, best}

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
		= =		
	ordinal	enough information to order objects	median, percentiles, rank correlation,	hardness of minerals, grades, street numbers,
		$<$ $>$ \leq \geq	run tests, sign tests	quality: {good, better, best}
numeric (quantitative)	interval	differences are meaningful, a unit of measurement exists + -	mean, standard deviation, Pearson's correlation, <i>t</i> -test, <i>F</i> -test	calendar dates, temperature in Celsius, temperature in Fahrenheit

Туре		Comparison	Statistics	Examples
categorical (qualitative)	nominal	values are names, only information to distinguish objects	mode, entropy, contingency, correlation, χ^2 test	zip codes, employee IDs, eye color, gender: {male, female}
		$=$ \neq		
	ordinal	enough information to order objects	median, percentiles, rank correlation,	hardness of minerals, grades, street numbers,
		$<$ $>$ \leq \geq	run tests, sign tests	quality: {good, better, best}
numeric (quantitative,	interval	differences are meaningful, a unit of measurement exists + -	mean, standard deviation, Pearson's correlation, <i>t</i> -test, <i>F</i> -test	calendar dates, temperature in Celsius, temperature in Fahrenheit
	ratio	differences and ratios are meaningful * /	geometric mean, harmonic mean, percent variation	temperature in Kelvin, monetary quantities, counts, age, length, electrical current

Туре		Permissible transformation	Comment	
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.	

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \rightarrow f(x)$, where f is a monotonic	An attribute encompassing the notion of "{good, better, best}" can be represented equally well by the values $\{1, 2, 3\}$.

Туре		Permissible transformation	Comment	
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.	
	ordinal	any order-preserving change of values: $x \rightarrow f(x)$, where f is a monotonic	An attribute encompassing the notion of "{good, better, best}" can be represented equally well by the values $\{1, 2, 3\}$.	
numeric (quantitative)	interval	$x \rightarrow a \cdot x + b$, where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).	

Туре		Permissible transformation	Comment
categorical (qualitative)	nominal	any one-to-one mapping, permutation of values	A reassignment of employee ID numbers will not make any difference.
	ordinal	any order-preserving change of values: $x \rightarrow f(x)$, where f is a monotonic	An attribute encompassing the notion of "{good, better, best}" can be represented equally well by the values $\{1, 2, 3\}$.
numeric (quantitative)	interval	$x \rightarrow a \cdot x + b$, where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
	ratio	$x \rightarrow a \cdot x$, where a is a constant	Length can be measured in meters or feet.

Remarks:

- □ Identifying, considering, and measuring an attribute *A* of an object *O* is the heart of model formation and always goes along with a sort of abstraction. Formally, this abstraction is operationalized by a model formation function $\alpha : O \to X$. [ML Introduction]
- □ The terms "attribute" and "feature" can be used synonymously. However, a slight distinction is the following: attributes are often associated with objects, O, while features usually designate the dimensions of the feature space, X.
- □ The type of an attribute is also referred to as the type of a *measurement scale* or *level of measurement*.
- □ We call a transformation of an attribute *permissible* if its meaning is unchanged after the transformation.
- Distinguish between *discrete* attributes and *continuous* attributes. The former can only take a finite or countably infinite set of values, the latter can be measured in infinitely small units. Be careful when deriving from this distinction an attribute's type.
- We will encode attributes of interval type or ratio type by real numbers. Note that attributes of nominal type and ordinal type can also be encoded by real numbers.
- □ Particular learning methods require particular attribute types.

Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with differently intricate characteristics:

- 1. Inhomogeneity of attributes:
- 2. Inhomogeneity of objects:
- 3. Inhomogeneity of distributions:
- 4. Curse of dimensionality:

5. Resolution:

Types of Data Sets

Data sets may not be a homogeneous collection of objects but come along with differently intricate characteristics:

1. Inhomogeneity of attributes:

Consider the combination of different attribute types within a single object.

2. Inhomogeneity of objects:

Consider the combination of different objects in a single data set.

3. Inhomogeneity of distributions:

The correlation between attributes varies in the instance space.

4. Curse of dimensionality:

Attribute number and object density stand in exponential relation.

5. Resolution:

The number of objects or attributes may be given at different resolutions.

Types of Data Sets: Record Data

Collection of records, each of which consists of a fixed set of attributes:

ID	Check	Status	Income	Risk
1	+	single	125 000	No
2	-	married	100 000	No
3	-	single	70 000	No
4	+	married	120 000	No
5	-	divorced	95 000	Yes
6	-	married	60 000	No
7	+	divorced	220 000	No
8	-	single	85 000	Yes
9	-	married	75 000	No
10	-	single	90 000	Yes

- If all elements in a data set have the same fixed set of numeric attributes, they can be thought of as points in a multi-dimensional space.
- Such data can be represented by a matrix, where each row stores an object and each column stores an attribute.

Example: term-document matrices in information retrieval.

Types of Data Sets: Graph Data

Graph of the Linked Open Data cloud [richard.cyganiak.de] :

Types of Data Sets: Ordered Data

Average monthly temperature of land and ocean (= spatio-temporal data):

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)

Given a set of repeated measurements of the same quantity. Then, the closeness of the measurements to one another is called *precision*, a possible systematic variation is called *bias*, and the closeness to the true value is called *accuracy*.

Data Quality

When repeating measurements of a quantity, measurement errors and data collection errors may occur during the measurement process. Questions:

- 1. What kinds of data quality problems exist?
- 2. How to detect data quality problems?
- 3. How to address data quality problems?

Definition 1 (Precision, Bias, Accuracy)

Given a set of repeated measurements of the same quantity. Then, the closeness of the measurements to one another is called *precision*, a possible systematic variation is called *bias*, and the closeness to the true value is called *accuracy*.

Examples for data quality problems:

- □ noise, artifacts, outliers
- missing values
- duplicate data

Data Quality: Noise

Noise refers to random modifications of attributes that often have a spatial or temporal characteristics:

Artifacts refer to more deterministic distortions of a measurement process.

Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably different than most of the other elements:

Data Quality: Outliers

Outliers are members in the data set with characteristics that are considerably different than most of the other elements:

Data Quality: Missing Values

Main reasons for missing values:

- 1. Information is not collected. Example: people decline to give their age or weight.
- 2. Attributes may not be applicable to all elements in *O*. Example: annual income is not applicable to children.

Strategies for handling missing values:

- eliminate members of the data
- □ estimate missing values
- □ ignore the missing value during analysis
- □ replace with all possible values weighted by their probabilities

Data Preprocessing

- □ aggregation of objects in *O*
- □ sampling of object set *O*
- \square sampling of feature space *X*
- □ selection of attributes (features) [attributes versus features]
- transformation of attributes (features)
- discretization and binarization of attributes (features)
- $\hfill\square$ dimensionality reduction of feature space X

Chapter ML:II

II. Machine Learning Basics

- On Data
- □ Regression
- □ Concept Learning: Search in Hypothesis Space
- □ Concept Learning: Search in Version Space
- □ Measuring Performance

Classification versus Regression

 \square X is a *p*-dimensional feature space or input space.

Customer 1				
house owner	yes			
income (p.a.)	51 000 EUR			
repayment (p.m.)	1 000 EUR			
credit period	7 years			
SCHUFA entry	no			
age	37			
married	yes			

Customer n				
house owner	no			
income (p.a.)	55 000 EUR			
repayment (p.m.)	1 200 EUR			
credit period	8 years			
SCHUFA entry	no			
age	?			
married	yes			

Classification:

 $\Box C = \{-1, 1\}$ is a set of classes. (similarly: $C = \{0, 1\}, C = \{no, yes\}$)

. . .

- \Box $c: X \rightarrow C$ is the ideal classifier for X.
- $\square D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$

Classification versus Regression

 \square X is a *p*-dimensional feature space or input space.

Customer 1				
house owner	yes			
income (p.a.)	51 000 EUR			
repayment (p.m.)	1 000 EUR			
credit period	7 years			
SCHUFA entry	no			
age	37			
married	yes			

Customer n				
house owner	no			
income (p.a.)	55 000 EUR			
repayment (p.m.)	1 200 EUR			
credit period	8 years			
SCHUFA entry	no			
age	?			
married	yes			

Classification:

- $\Box C = \{-1, 1\}$ is a set of classes. (similarly: $C = \{0, 1\}, C = \{no, yes\}$)
- \Box $c: X \rightarrow C$ is the ideal classifier for X.
- $\square D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$

Regression:

- \Box $Y \subseteq \mathbf{R}$ is the output space.
- \Box y_i is an observed credit line value for an $\mathbf{x}_i \in X$.

$$D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \subseteq X \times Y \text{ is a set of examples.}$$

ML:II-30 Basics

The Linear Regression Model

 \Box Given x predict a real-valued output under a linear model:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot x_j$$

 \Box Vector notation with $x_0 = 1$ and $\mathbf{w} = (w_0, w_1, \dots, w_p)^T$:

 $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

Assess goodness of fit as residual sum of squares:

$$\mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

(1)

The Linear Regression Model

 \Box Given x predict a real-valued output under a linear model:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot x_j$$

 \Box Vector notation with $x_0 = 1$ and $\mathbf{w} = (w_0, w_1, \dots, w_p)^T$:

 $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

□ Assess goodness of fit as residual sum of squares:

$$\mathsf{RSS}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
(1)

 \Box Estimate w by the least squares method:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbf{R}^{p+1}}{\operatorname{argmin}} \ \mathsf{RSS}(\mathbf{w})$$

(2)

Remarks:

- □ From a statistical viewpoint, $\mathbf{x} = x_1, \ldots, x_p$ and y form random variables (vectorial and scalar respectively). Each feature vector, \mathbf{x}_i , and outcome, y_i , is the result of a random experiment and hence governed by a—usually unknown—probability distribution.
- \Box The distributions of y_i and $(y_i y(\mathbf{x}_i))$ are identical.
- $\hfill\square$ Estimating $\mathbf w$ via RSS minimization is based on the following assumptions:
 - 1. The random variables y_i are statistically independent. Actually, the conditional independence of the y_i under x_i is sufficient.
 - 2. The means $E(y_i)$ lie on a straight line, known as the true (population) regression line: $E(y_i) = \mathbf{w}^T \mathbf{x}_i$
 - 3. The probability distributions $P(y_i | \mathbf{x}_i)$ have the same variance.
- □ The three assumptions above are called the *weak set* (of assumptions). Along with a fourth assumption about the distribution shape of y_i they become the *strong set* of assumptions.
- □ In order to avoid cluttered notation, we won't use different symbols to distinguish random variables from ordinary variables. I.e., if x, x, y denote a (vectorial or scalar) random variable this will become clear from the context.

One-Dimensional Feature Space

One-Dimensional Feature Space

One-Dimensional Feature Space

$$\mathsf{RSS} = \sum_{i=1}^{n} (y_i - y(x_i))^2$$
One-Dimensional Feature Space

$$y(x) = w_0 + w_1 \cdot x,$$
 RSS $(w_0, w_1) = \sum_{i=1}^n (y_i - w_0 - w_1 \cdot x_i)^2$

One-Dimensional Feature Space

Minimize $RSS(w_0, w_1)$:

1.
$$\frac{\partial}{\partial w_0} \sum_{i=1}^n (y_i - w_0 - w_1 \cdot x_i)^2 = 0$$
$$\rightsquigarrow \dots \rightsquigarrow \quad \hat{w}_0 = \frac{1}{n} \sum_{i=1}^n y_i - \frac{w_1}{n} \sum_{i=1}^n x_i = \bar{y} - \hat{w}_1 \cdot \bar{x}$$

One-Dimensional Feature Space

Minimize $RSS(w_0, w_1)$:

1.
$$\frac{\partial}{\partial w_0} \sum_{i=1}^n (y_i - w_0 - w_1 \cdot x_i)^2 = 0$$
$$\implies \dots \implies \hat{w}_0 = \frac{1}{n} \sum_{i=1}^n y_i - \frac{w_1}{n} \sum_{i=1}^n x_i = \bar{y} - \hat{w}_1 \cdot \bar{x}$$

$$2. \quad \frac{\partial}{\partial w_1} \sum_{i=1}^n (y_i - w_0 - w_1 \cdot x_i)^2 = 0$$

$$\rightsquigarrow \dots \rightsquigarrow \hat{w}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}) \cdot \sum_{i=1}^n (y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Higher-Dimensional Feature Space

$$\Box \text{ Recall } \underline{\text{Equation (1)}} \colon \text{RSS}(\mathbf{w}) = \sum_{\mathbf{x}_i \in D} (y(\mathbf{x}_i) - \mathbf{w}^T \mathbf{x}_i)^2$$

□ Let X denote the $n \times (p+1)$ matrix where row *i* is the extended input vector $(1 \ \mathbf{x}_i^T)$, $\mathbf{x}_i \in D$.

 \Box Let y denote the *n*-vector of outputs in the training set *D*.

Higher-Dimensional Feature Space

$$\Box \text{ Recall } \underline{\text{Equation (1)}} \colon \text{RSS}(\mathbf{w}) = \sum_{\mathbf{x}_i \in D} (y(\mathbf{x}_i) - \mathbf{w}^T \mathbf{x}_i)^2$$

□ Let X denote the $n \times (p+1)$ matrix where row *i* is the extended input vector $(1 \ \mathbf{x}_i^T)$, $\mathbf{x}_i \in D$.

 \Box Let y denote the *n*-vector of outputs in the training set *D*.

$$\rightsquigarrow \mathsf{RSS}(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

RSS(w) is a quadratic function in p + 1 parameters.

Higher-Dimensional Feature Space

$$\Box \text{ Recall } \underline{\text{Equation (1)}} \colon \text{RSS}(\mathbf{w}) = \sum_{\mathbf{x}_i \in D} (y(\mathbf{x}_i) - \mathbf{w}^T \mathbf{x}_i)^2$$

□ Let X denote the $n \times (p+1)$ matrix where row *i* is the extended input vector $(1 \ \mathbf{x}_i^T)$, $\mathbf{x}_i \in D$.

 \Box Let y denote the *n*-vector of outputs in the training set *D*.

$$\rightsquigarrow \mathsf{RSS}(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

RSS(w) is a quadratic function in p + 1 parameters.

Minimize $\text{RSS}(\mathbf{w})$:

$$\frac{\partial \mathbf{RSS}}{\partial \mathbf{w}} = -2\mathbf{X}^T(\mathbf{y} - \mathbf{Xw}) = 0$$

$$\frac{\partial^2 \mathbf{RSS}}{\partial \mathbf{w} \partial \mathbf{w}^T} = -2\mathbf{X}^T \mathbf{X}$$

Higher-Dimensional Feature Space

 $\label{eq:main_state} \textit{Minimize RSS}(\mathbf{w}) \text{: (continued)}$

$$\begin{aligned} \mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\mathbf{w}) &= 0 \\ \Leftrightarrow \qquad \mathbf{X}^{T}\mathbf{X}\mathbf{w} &= \mathbf{X}^{T}\mathbf{y} \\ \rightsquigarrow \qquad \hat{\mathbf{w}} &= (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T} \mathbf{y} \end{aligned}$$

Higher-Dimensional Feature Space

 $\label{eq:main_state} \textit{Minimize RSS}(\mathbf{w}) \texttt{:} \quad \textit{(continued)}$

If **X** has full column rank p + 1.

pseudo inverse of ${\bf X}$

Higher-Dimensional Feature Space

 $\label{eq:minimize} \textit{Minimize RSS}(\mathbf{w}) \text{: (continued)}$

pseudo inverse of ${\bf X}$

If **X** has full column rank p + 1.

- $\hat{y}(\mathbf{x}_i) = \mathbf{x}_i^T \hat{\mathbf{w}}$ Regression function with least squares estimator $\hat{\mathbf{w}}$.
 - $\hat{\mathbf{y}} = \mathbf{X} \hat{\mathbf{w}}$ The *n*-vector of fitted values at the training input. = $\mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Linear Regression for Classification (illustrated for p = 1)

<u>Regression</u> learns a real-valued function given as $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}.$

$$y(x) = (w_0 \ w_1) \begin{pmatrix} 1 \\ x \end{pmatrix}$$

Linear Regression for Classification (illustrated for p = 1)

Binary-valued (± 1) functions are also real-valued.

Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

$$\Box$$
 Regression: $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

$$\Box$$
 Classification: $y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$

Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

$$\Box$$
 Regression: $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

$$\Box$$
 Classification: $y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$

Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

$$\Box$$
 Regression: $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

$$\Box$$
 Classification: $y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$

Linear Regression for Classification (illustrated for p = 1)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

□ The discrimination point, •, is defined by $w_0 + w_1 \cdot x' = 0$.

 \Box For p = 2 we are given a discrimination *line*.

Linear Regression for Classification (illustrated for p = 2)

Linear Regression for Classification (illustrated for p = 2)

Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

$$y(x) = (w_0 \ w_1 \ w_2) \begin{pmatrix} 1\\ x_1\\ x_2 \end{pmatrix}$$

ML:II-55 Basics

Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

$$\Box$$
 Regression: $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

$$\Box$$
 Classification: $y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$

Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

Regression:
$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

$$\Box$$
 Classification: $y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$

Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

□ The discrimination line, —, is defined by $w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 = 0$. □ For p = 3 (p > 3) we are given a discriminating (hyper)plane.

Linear Regression for Classification (illustrated for p = 2)

Use linear regression to learn w from *D*, where $y_i = \pm 1 \approx y(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i$.

□ The discrimination line, —, is defined by $w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 = 0$. □ For p = 3 (p > 3) we are given a discriminating (hyper)plane.

The Linear Model Structure

The components (variables, random variables) of the input vector $\mathbf{x} = (x_1, \dots, x_p)$ can come from different sources [Hastie et al. 2001]:

- 1. quantitative inputs
- 2. transformations of quantitative inputs, such as $\log x_j$, $\sqrt{x_j}$
- 3. basis expansions, such as $x_j = (x_1)^j$
- 4. encoding of a qualitative variable $g, g \in \{1, \ldots, p\}$, as $x_j = I(g = j)$
- 5. interactions between variables, such as $x_3 = x_1 \cdot x_2$

The Linear Model Structure

The components (variables, random variables) of the input vector $\mathbf{x} = (x_1, \dots, x_p)$ can come from different sources [Hastie et al. 2001]:

- 1. quantitative inputs
- 2. transformations of quantitative inputs, such as $\log x_j$, $\sqrt{x_j}$
- 3. basis expansions, such as $x_j = (x_1)^j$
- 4. encoding of a qualitative variable $g, g \in \{1, ..., p\}$, as $x_j = I(g = j)$
- 5. interactions between variables, such as $x_3 = x_1 \cdot x_2$

No matter the source of the x_i , the model is still linear in the parameters w:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot \phi_j(x_j)$$

The Linear Model Structure

The components (variables, random variables) of the input vector $\mathbf{x} = (x_1, \dots, x_p)$ can come from different sources [Hastie et al. 2001]:

- 1. quantitative inputs
- 2. transformations of quantitative inputs, such as $\log x_j$, $\sqrt{x_j}$
- 3. basis expansions, such as $x_j = (x_1)^j$
- 4. encoding of a qualitative variable $g, g \in \{1, ..., p\}$, as $x_j = I(g = j)$
- 5. interactions between variables, such as $x_3 = x_1 \cdot x_2$

No matter the source of the x_i , the model is still linear in the parameters w:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot \phi_j(x_j)$$

 \Box linear in the parameters: constant w_j and additive combination

The Linear Model Structure

The components (variables, random variables) of the input vector $\mathbf{x} = (x_1, \dots, x_p)$ can come from different sources [Hastie et al. 2001]:

- 1. quantitative inputs
- 2. transformations of quantitative inputs, such as $\log x_j$, $\sqrt{x_j}$
- 3. basis expansions, such as $x_j = (x_1)^j$
- 4. encoding of a qualitative variable $g, g \in \{1, ..., p\}$, as $x_j = I(g = j)$
- 5. interactions between variables, such as $x_3 = x_1 \cdot x_2$

No matter the source of the x_i , the model is still linear in the parameters w:

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^p w_j \cdot \phi_j(x_j)$$

 \Box linear in the parameters: constant w_j and additive combination

basis functions: input variables (space) become feature variables (space)

Theoretical Properties of the Solution

Theorem 1 (Gauss-Markov)

Let $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ be a set of examples to be fitted with a linear model as $y(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$. Within the class of linear unbiased estimators for \mathbf{w} , the least squares estimator $\hat{\mathbf{w}}$ has minimum variance, i.e., is most efficient.

Theoretical Properties of the Solution

Theorem 1 (Gauss-Markov)

Let $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ be a set of examples to be fitted with a linear model as $y(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$. Within the class of linear unbiased estimators for \mathbf{w} , the least squares estimator $\hat{\mathbf{w}}$ has minimum variance, i.e., is most efficient.

Related followup issues:

- $\hfill\square$ mean and variance of $\hat{\mathbf{w}}$
- proof of the Gauss-Markov theorem
- weak set and strong set of assumptions
- efficiency and consistency of unbiased estimators
- \square rank deficiencies, where the feature number p exceeds |D|=n
- □ relation of mean least squares and the maximum likelihood principle

Chapter ML:II (continued)

II. Machine Learning Basics

- On Data
- □ Regression
- □ Concept Learning: Search in Hypothesis Space
- Concept Learning: Search in Version Space
- □ Measuring Performance

Concept Learning: Search in Hypothesis Space

A Learning Task

Given is a set *D* of examples: days that are characterized by the six features "Sky", "Temperature", "Humidity", "Wind", "Water", and "Forecast", along with a statement (in fact: a feature) whether or not our friend will enjoy her favorite sport.

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
1	sunny	warm	normal	strong	warm	same	yes
2	sunny	warm	high	strong	warm	same	yes
3	rainy	cold	high	strong	warm	change	no
4	sunny	warm	high	strong	cool	change	yes

□ What is the concept behind "EnjoySport"?

What are possible hypotheses to formalize the concept "EnjoySport"? Similarly: What are the elements of the set or class "EnjoySport"?

Remarks:

Domains of the features in the learning task:

Sky	Temperature	Humidity	Wind	Water	Forecast
sunny	warm	normal	strong	warm	same
rainy	cold	high	weak	cool	change
cloudy					

- A hypothesis is a finding or an insight gained by inductive reasoning. A hypothesis cannot be inferred or proved by deductive reasoning.
- Within concept learning tasks, hypotheses are used to capture the target concept.
 A hypothesis is justified inductively, by its means to represent a given set of observations, which are called examples here.

Concept Learning: Search in Hypothesis Space

Definition 1 (Concept, Hypothesis, Hypothesis Space)

A concept is a subset of an object set O and hence determines a subset of the feature space $X = \alpha(O)$. Concept learning is the approximation of the ideal classifier $c : X \to \{0, 1\}$ by a function y, where c is defined as follows:

$$c(\mathbf{x}) = \begin{cases} 1 & \text{if } \alpha^{-1}(\mathbf{x}) \text{ belongs to the concept} \\ 0 & \text{otherwise} \end{cases}$$

A function $h: X \to \{0, 1\}$ is called hypothesis. A set *H* of hypotheses among which the approximation function *y* is searched is called hypothesis space.

Concept Learning: Search in Hypothesis Space

Usually, an example set D, $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\}$, contains positive $(c(\mathbf{x}) = 1)$ and negative $(c(\mathbf{x}) = 0)$ examples. [Learning Task]

Definition 2 (Hypothesis-Fulfilling, Consistency)

An example $(\mathbf{x}, c(\mathbf{x}))$ fulfills a hypothesis h iff $h(\mathbf{x}) = 1$. A hypothesis h is consistent with an example $(\mathbf{x}, c(\mathbf{x}))$ iff $h(\mathbf{x}) = c(\mathbf{x})$.

A hypothesis h is consistent with a set D of examples, denoted as consistent(h, D), iff:

 $\forall (\mathbf{x}, c(\mathbf{x})) \in D: \ h(\mathbf{x}) = c(\mathbf{x})$

Remarks:

- The symbol "Iff" or "iff" is an abbreviation for "If and only if", which means "necessary and sufficient". [Wolfram]
- The following terms are used synonymously: target concept, target function, classifier, ideal classifier. [ML Introduction]
- □ The fact that a hypothesis is consistent with an example can also be described the other way round: an example is consistent with a hypothesis.
- □ Given an example (x, c(x)), notice the difference between (1) hypothesis-fulfilling and (2) being consistent with a hypothesis. The former asks for h(x) = 1, disregarding the actual target concept value c(x). The latter asks for the equivalence between the target concept c(x) and the hypothesis h(x).
- □ The consistency of *h* can be analyzed with respect to a single example or a set *D* of examples. Given the latter, consistency requires for all elements in *D* that $h(\mathbf{x}) = 1$ iff $c(\mathbf{x}) = 1$. This is equivalent with the condition that $h(\mathbf{x}) = 0$ iff $c(\mathbf{x}) = 0$ for all $\mathbf{x} \in D$.
- \Box Learning means to determine a hypothesis $h \in H$ that is consistent with D.

Concept Learning: Search in Hypothesis Space

A Learning Task (continued)

Structure of a hypothesis *h*:

- 1. conjunction of feature-value pairs
- 2. three kinds of values: literal, ? (wildcard), \perp (contradiction)

A hypothesis in the example [Learning Task]: (sunny, ?, ?, strong, ?, same)
A Learning Task (continued)

Structure of a hypothesis *h*:

- 1. conjunction of feature-value pairs
- 2. three kinds of values: literal, ? (wildcard), \perp (contradiction)

A hypothesis in the example [Learning Task]: (sunny, ?, ?, strong, ?, same)

Definition 3 (Maximally Specific / General Hypothesis)

The hypotheses $s_0(\mathbf{x}) \equiv 0$ and $g_0(\mathbf{x}) \equiv 1$ are called maximally specific and maximally general hypothesis respectively. No $\mathbf{x} \in X$ fulfills s_0 , and all $\mathbf{x} \in X$ fulfill g_0 .

Maximally specific / general hypothesis in the example [Learning Task]:

$$\square \ s_0 = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$$

$$\Box g_0 = \langle ?, ?, ?, ?, ?, ?, ? \rangle$$

Ordering of Hypotheses

 $\begin{aligned} \mathbf{x}_1 &= (\textit{sunny, warm, normal, strong, warm, same}) & h_1 &= \langle \textit{sunny, ?, normal, ?, ?, ?} \rangle \\ & h_2 &= \langle \textit{sunny, ?, ?, ?, warm, ?} \rangle \\ \mathbf{x}_4 &= (\textit{sunny, warm, high, strong, cool, change}) & h_4 &= \langle \textit{sunny, ?, ?, ?, ?, ?} \rangle \end{aligned}$

Ordering of Hypotheses

Definition 4 (More General Relation)

Let *X* be a feature space and let h_1 and h_2 be two boolean-valued functions with domain *X*. Then function h_1 is called more general than function h_2 , denoted as $h_1 \ge_q h_2$, iff:

$$\forall \mathbf{x} \in X : (h_2(\mathbf{x}) = 1 \text{ implies } h_1(\mathbf{x}) = 1)$$

 h_1 is called stricly more general than h_2 , denoted as $h_1 >_q h_2$, iff:

$$(h_1 \ge_g h_2)$$
 and $(h_2 \not\ge_g h_1)$

Ordering of Hypotheses

Definition 4 (More General Relation)

Let *X* be a feature space and let h_1 and h_2 be two boolean-valued functions with domain *X*. Then function h_1 is called more general than function h_2 , denoted as $h_1 \ge_q h_2$, iff:

$$\forall \mathbf{x} \in X : (h_2(\mathbf{x}) = 1 \text{ implies } h_1(\mathbf{x}) = 1)$$

 h_1 is called stricly more general than h_2 , denoted as $h_1 >_q h_2$, iff:

$$(h_1 \geq_g h_2)$$
 and $(h_2 \not\geq_g h_1)$

About the maximally specific / general hypothesis:

- \Box s_0 is minimum and g_0 is maximum with regard to \geq_g : no hypothesis is more specific wrt. s_0 , and no hypothesis is more general wrt. g_0 .
- \Box We will consider only hypothesis spaces that contain s_0 and g_0 .

Remarks:

- \Box If h_1 is more general than h_2 , then h_2 can also be called being more specific than h_1 .
- $\Box \ge_g$ and $>_g$ are independent of a target concept c. They depend only on the fact that examples fulfill a hypothesis, i.e., whether $h(\mathbf{x}) = 1$. They require not that $c(\mathbf{x}) = 1$.
- □ The \geq_g -relation defines a partial ordering on the hypothesis space $H : \geq_g$ is reflexive, anti-symmetric, and transitive. The ordering is *partial* since (unlike in a total ordering) not all hypothesis pairs stand in the relation. I.e., we are given hypotheses h_i , h_j , for which neither $h_i \geq_g h_j$ nor $h_j \geq_g h_i$ holds, such as the hypotheses h_1 and h_2 in the <u>hypothesis space</u>.

Remarks: (continued)

- □ The semantics of the implication, in words "*a* implies *b*", denoted as $a \rightarrow b$, is as follows. $a \rightarrow b$ is true if either (1) *a* is true and *b* is true, or (2) if *a* is false and *b* is true, or (3) if *a* is false and *b* is false—in short: "if *a* is true then *b* is true as well", or, "the truth of *a* implies the truth of *b*". The connective "→" is the causality connective.
- □ In particular does the connective "→" not stand for "entails", which would be denoted as either ⇒ or \models . Logical entailment (synonymously: logical inference, logical deduction) allows to infer or to proof a fact. From the fact $h_2(\mathbf{x}) = 1$, however, we cannot infer or proof the fact $h_1(\mathbf{x}) = 1$.
- □ Here, in the <u>definition</u>, the implication specifies a condition that is to be fulfilled by the definiendum (= the thing to be defined). The implication is used to check whether or not a thing falls under the definition: each pair of functions, h_1 , h_2 , falls under the definition of the \geq_g -relation (i.e., stands in the \geq_g -relation) if and only if the implication $h_2(\mathbf{x}) = 1 \rightarrow h_1(\mathbf{x}) = 1$ is true for all $\mathbf{x} \in X$.
- □ In a nutshell: distinguish between " α requires β ", denoted as $\alpha \to \beta$, on the one hand, and "from α follows β ", denoted as $\alpha \Rightarrow \beta$, on the other hand. $\alpha \to \beta$ is considered as a sentence from the *object language* (language of discourse) and stipulates a computing operation, whereas $\alpha \Rightarrow \beta$ is a sentence from the *meta language* and makes an assertion *about* the sentence $\alpha \to \beta$, namely: " $\alpha \to \beta$ is a tautology".
- □ Finally, consider the following sentences from the object language, which are synonymous: " $\alpha \rightarrow \beta$ ", " α implies β ", "if α then β ", " α causes β ", " α requires β ", " β involves α ".

Inductive Learning Hypothesis

"Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples."

[p.23, Mitchell 1997]

1. $h=s_0$ // h is a maximally specific hypothesis in H.

2. FOREACH $(\mathbf{x}, c(\mathbf{x})) \in D$ DO IF $c(\mathbf{x}) = 1$ THEN // Use only positive examples. IF $h(\mathbf{x}) = 0$ DO $h = min_generalization(h, \mathbf{x})$ // Relax hypothesis h wrt. \mathbf{x} . ENDIF

ENDIF

ENDDO

3. return(h)

Remarks:

- □ Another term for "generalization" is "relaxation".
- □ The function *min_generalization*(*h*, **x**) returns a hypothesis *h*' that is minimally generalized wrt. *h* and that is consistent with (**x**, 1). Denoted formally: $h' \ge_g h$ and $h'(\mathbf{x}) = 1$ and there is no *h*" with $h' >_g h'' \ge_g h$ and $h''(\mathbf{x}) = 1$.
- □ The relaxation of *h* given \mathbf{x} , *min_generalization*(*h*, \mathbf{x}), may not be deterministic. In such a case, one of the alternatives has to be chosen.
- □ If a hypothesis *h* needs to be relaxed towards some *h*' where *h*' \notin *H*, the maximally general hypothesis $g_0 \equiv 1$ can be added to *H*.
- □ Similarly to *min_generalization*(h, \mathbf{x}), a function *min_specialization*(h, \mathbf{x}) can be defined, which returns a minimally specialized, consistent hypotheses for negative examples.

See the <u>example set D</u> for the concept *EnjoySport*.

 $h_0 = \underline{s_0} = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$

 $\mathbf{x}_1 = (sunny, warm, normal, strong, warm, same)$ $h_1 = \langle sunny, warm, normal, strong, warm, same \rangle$

See the <u>example set D</u> for the concept *EnjoySport*.

 $h_0 = \underline{s_0} = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$

 $\mathbf{x}_1 = (sunny, warm, normal, strong, warm, same)$ $h_1 = \langle sunny, warm, normal, strong, warm, same \rangle$ $\mathbf{x}_2 = (sunny, warm, high, strong, warm, same)$ $h_2 = \langle sunny, warm, ?, strong, warm, same \rangle$

See the example set D for the concept *EnjoySport*.

 $\mathbf{x}_1 = (sunny, warm, normal, strong, warm, same)$ $h_1 = \langle sunny, warm, normal, strong, warm, same \rangle$ $\mathbf{x}_2 = (sunny, warm, high, strong, warm, same)$ $h_2 = \langle sunny, warm, ?, strong, warm, same \rangle$ $\mathbf{x}_3 = (rainy, cold, high, strong, warm, change)$ $h_3 = \langle sunny, warm, ?, strong, warm, same \rangle$

 $h_0 = s_0 = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$

See the example set D for the concept *EnjoySport*.

 $\mathbf{x}_1 = (sunny, warm, normal, strong, warm, same)$ $h_1 = \langle sunny, warm, normal, strong, warm, same \rangle$ $\mathbf{x}_2 = (sunny, warm, high, strong, warm, same)$ $\mathbf{x}_3 = (rainy, cold, high, strong, warm, change)$ $h_3 = \langle sunny, warm, ?, strong, warm, same \rangle$ $\mathbf{x}_4 = (sunny, warm, high, strong, cool, change)$

 $h_0 = s_0 = \langle \perp, \perp, \perp, \perp, \perp, \perp \rangle$

 $h_2 = \langle \text{ sunny, warm, } ?, \text{ strong, warm, same } \rangle$

$$h_4 = \langle \text{ sunny, warm, }?, \text{ strong, }?, ? \rangle$$

Discussion of the Find-S Algorithm

- 1. Did we learn the only concept—or are there others?
- 2. Why should one pursuit the maximally specific hypothesis?
- 3. What if several maximally specific hypotheses exist?
- 4. Inconsistencies in the example set *D* remain undetected.
- 5. An inappropriate hypothesis structure or space H remains undetected.

Definition 5 (Version Space)

The version space $V_{H,D}$ of an hypothesis space H and a example set D is comprised of all hypotheses $h \in H$ that are consistent with a set D of examples:

 $V_{H,D} = \{ h \mid h \in H \land (\forall (\mathbf{x}, c(\mathbf{x})) \in D : h(\mathbf{x}) = c(\mathbf{x})) \}$

Definition 5 (Version Space)

The version space $V_{H,D}$ of an hypothesis space H and a example set D is comprised of all hypotheses $h \in H$ that are consistent with a set D of examples:

 $V_{H,D} = \{ h \mid h \in H \land (\forall (\mathbf{x}, c(\mathbf{x})) \in D : h(\mathbf{x}) = c(\mathbf{x})) \}$

Illustration of $V_{H,D}$ for the <u>example set D</u>:

Remarks:

- □ The term "version space" reflects the fact that $V_{H,D}$ represents the set of all consistent versions of the target concept that is encoded in *D*.
- □ A naive approach for the construction of the version space is the following: (1) enumeration of all members of *H*, and, (2) elimination of those $h \in H$ for which $h(\mathbf{x}) \neq c(\mathbf{x})$ holds. This approach presumes a finite hypothesis space *H* and is feasible only for toy problems.

Definition 6 (Boundary Sets of a Version Space)

Let *H* be hypothesis space and let *D* be set of examples. Then, based on the \geq_q -relation, the set of maximally general hypotheses, *G*, is defined as follows:

 $\{g \mid g \in H \land \textit{consistent}(g, D) \land (\not \exists g' : g' \in H \land g' >_g g \land \textit{consistent}(g', D)) \}$

Similarly, the set of maximally specific (i.e., minimally general) hypotheses, *S*, is defined as follows:

 $\{s \mid s \in H \land consistent(s, D) \land (\not \exists s' : s' \in H \land s >_g s' \land consistent(s', D)) \}$

Definition 6 (Boundary Sets of a Version Space)

Let *H* be hypothesis space and let *D* be set of examples. Then, based on the \geq_q -relation, the set of maximally general hypotheses, *G*, is defined as follows:

 $\{g \mid g \in H \land \textit{consistent}(g, D) \land (\not \exists g' : g' \in H \land g' >_g g \land \textit{consistent}(g', D)) \}$

Similarly, the set of maximally specific (i.e., minimally general) hypotheses, *S*, is defined as follows:

 $\{s \mid s \in H \land consistent(s, D) \land (\not \exists s' : s' \in H \land s >_g s' \land consistent(s', D)) \}$

Theorem 1 (Version Space Representation)

Let *X* be a feature space and let *H* be a set of boolean-valued functions with domain *X*. Moreover, let $c : X \to \{0, 1\}$ be a target concept and let *D* be a set of examples of the form $(\mathbf{x}, c(\mathbf{x}))$. Then, based on the \geq_g -relation, each member of the version space $V_{H,D}$ lies in between two members of *G* and *S* respectively:

$$V_{H,D} = \{h \mid h \in H \land (\exists g \in G \exists s \in S : g \ge_g h \ge_g s) \}$$

Candidate Elimination Algorithm [Mitchell 1997]

- $\Box \text{ Initialization: } G = \{g_0\}, S = \{s_0\}$
- $\hfill\square$ If $\mathbf x$ is a positive example
 - $\hfill\square$ Remove from ${\it G}$ any hypothesis that is not consistent with ${\bf x}$
 - $\hfill\square$ For each hypothesis s in S that is not consistent with $\mathbf x$
 - $\hfill\square$ Remove s from S
 - \Box Add to S all minimal generalizations h of s such that
 - 1. h is consistent with \mathbf{x} and
 - 2. some member of G is more general than h
 - \Box Remove from *S* any hypothesis that is less specific than another hypothesis in *S*

$\hfill\square$ If ${\bf x}$ is a negative example

- $\hfill\square$ Remove from S any hypothesis that is not consistent with $\mathbf x$
- \Box For each hypothesis *g* in *G* that is not consistent with **x**
 - $\square \text{ Remove } g \text{ from } G$
 - \Box Add to *G* all minimal specializations *h* of *g* such that
 - 1. h is consistent with \mathbf{x} and
 - 2. some member of S is more specific than h
 - $\hfill\square$ Remove from G any hypothesis that is less general than another hypothesis in G

Remarks:

- □ The basic idea of Candidate Elimination is as follows.
 - A maximally specific hypothesis *s* ∈ *S* restricts the positive examples in first instance.
 Hence, *s* must be relaxed (= generalized) with regard to each positive example that is not consistent with *s*.
 - Conversely, a maximally general hypothesis $g \in G$ tolerates the negative examples in first instance. Hence, g must be constrained (= specialized) with regard to each negative example that is not consistent with g.

Candidate Elimination Algorithm (pseudo code)

1. $G = \{g_0\} // G$ is the set of maximally general hypothesis in H. $S = \{s_0\} // S$ is the set of maximally specific hypothesis in H. 2. FOREACH $(\mathbf{x}, c(\mathbf{x})) \in D$ DO IF $c(\mathbf{x}) = 1$ THEN // x is a positive example. FOREACH $g \in G$ DO IF $g(\mathbf{x}) \neq 1$ THEN $G = G \setminus \{g\}$ ENDDO FOREACH $s \in S$ DO IF $s(\mathbf{x}) \neq 1$ THEN $S = S \setminus \{s\}, S^+ = min_generalizations(s, \mathbf{x})$ FOREACH $s \in S^+$ DO IF $(\exists g \in G : g \ge_g s)$ THEN $S = S \cup \{s\}$ ENDDO FOREACH $s \in S$ DO IF $(\exists s' \in S : s' \neq s \land s' \ge_g s)$ THEN $S = S \setminus \{s\}$ ENDDO ENDDO

ELSE $// \mathbf{x}$ is a negative example.

ENDIF ENDDO

3.
$$return(G, S)$$

Candidate Elimination Algorithm (pseudo code)

1. $G = \{g_0\}$ // G is the set of maximally general hypothesis in H. $S = \{s_0\}$ // S is the set of maximally specific hypothesis in H. 2. FOREACH $(\mathbf{x}, c(\mathbf{x})) \in D$ do IF $c(\mathbf{x}) = 1$ THEN // \mathbf{x} is a positive example. FOREACH $q \in G$ do if $q(\mathbf{x}) \neq 1$ then $G = G \setminus \{q\}$ enddo FOREACH $s \in S$ do IF $s(\mathbf{x}) \neq 1$ Then $S = S \setminus \{s\}, S^+ = min_generalizations(s, \mathbf{x})$ FOREACH $s \in S^+$ do if $(\exists g \in G : g \ge_q s)$ then $S = S \cup \{s\}$ enddo FOREACH $s \in S$ do if $(\exists s' \in S : s' \neq s \land s' \geq_q s)$ then $S = S \setminus \{s\}$ enddo ENDDO **ELSE** // x is a negative example. FOREACH $s \in S$ do if $s(\mathbf{x}) \neq 0$ then $S = S \setminus \{s\}$ enddo FOREACH $q \in G$ do IF $q(\mathbf{x}) \neq 0$ THEN $G = G \setminus \{q\}, G^- = \min_\text{specializations}(q, \mathbf{x})$ Foreach $g \in G^-$ do if $(\exists s \in S : g \ge_g s)$ then $G = G \cup \{g\}$ enddo FOREACH $g \in G$ do if $(\exists g' \in G : g' \neq g \land g \geq_q g')$ then $G = G \setminus \{g\}$ enddo **ENDDO** ENDIF

ENDDO

3. return(G, S)

Candidate Elimination Algorithm (illustration)

$$\{<\bot,\bot,\bot,\bot,\bot,\bot>\} \quad S_0$$

$$\{ < ?, ?, ?, ?, ?, ?, ? > \} G_0,$$

ML:II-96 Basics

Candidate Elimination Algorithm (illustration)

$$\{ < ?, ?, ?, ?, ?, ? > \} \quad G_0, G_1,$$

 $\mathbf{x}_1 = ($ *sunny*, *warm*, *normal*, *strong*, *warm*, *same*)

EnjoySport(\mathbf{x}_1) = 1

Candidate Elimination Algorithm (illustration)

 $\{\langle ?, ?, ?, ?, ?, ?, ? \rangle\}$ G₀, G₁, G₂

 $\mathbf{x}_1 = ($ sunny, warm, normal, strong, warm, same) $\mathbf{x}_2 = ($ sunny, warm, high, strong, warm, same) $EnjoySport(\mathbf{x}_1) = 1$ $EnjoySport(\mathbf{x}_2) = 1$

Candidate Elimination Algorithm (illustration)

Candidate Elimination Algorithm (illustration)

ML:II-100 Basics

Discussion of the Candidate Elimination Algorithm

- 1. What about selecting examples from *D* according to a certain strategy? Keyword: Active Learning
- 2. What are partially learned concepts and how to exploit them? Keyword: Ensemble Classification
- 3. The version space as defined here is "biased". What does this mean?
- 4. Will Candidate Elimination converge towards the correct hypothesis?
- 5. When does one end up with an empty version space?

Question 1: Selecting Examples from D

Next Example:

 $\mathbf{x}_c = (sunny, warm, normal, light, warm, same)$

Question 1: Selecting Examples from D

Next Example:

 $\mathbf{x}_c = ($ *sunny, warm, normal, light, warm, same*)

Observation:

Irrespective the value of $c(\mathbf{x}_c)$, the example $(\mathbf{x}_c, c(\mathbf{x}_c))$ will be consistent with three of the six hypotheses. It follows:

- \Box If *EnjoySport*(\mathbf{x}_c) = 1 *S* can be further generalized.
- □ If *EnjoySport*(\mathbf{x}_c) = 0 *G* can be further specialized.

Question 2: Partially Learned Concepts

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
(a)	sunny	warm	normal	strong	cool	change	
(b)	rainy	cold	normal	light	warm	same	
(C)	sunny	warm	normal	light	warm	same	
(d)	sunny	cold	normal	strong	warm	same	

Question 2: Partially Learned Concepts

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
(a)	sunny	warm	normal	strong	cool	change	6+:0-
(b)	rainy	cold	normal	light	warm	same	
(C)	sunny	warm	normal	light	warm	same	
(d)	sunny	cold	normal	strong	warm	same	

Question 2: Partially Learned Concepts

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
(a)	sunny	warm	normal	strong	cool	change	6+:0-
(b)	rainy	cold	normal	light	warm	same	0+:6-
(C)	sunny	warm	normal	light	warm	same	
(d)	sunny	cold	normal	strong	warm	same	

Question 2: Partially Learned Concepts

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
(a)	sunny	warm	normal	strong	cool	change	6+:0-
(b)	rainy	cold	normal	light	warm	same	0+:6-
(C)	sunny	warm	normal	light	warm	same	3+:3-
(d)	sunny	cold	normal	strong	warm	same	

Question 2: Partially Learned Concepts

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
(a)	sunny	warm	normal	strong	cool	change	6+:0-
(b)	rainy	cold	normal	light	warm	same	0+:6-
(C)	sunny	warm	normal	light	warm	same	3+:3-
(d)	sunny	cold	normal	strong	warm	same	2+:4-
Question 3: Inductive Bias

A different set of examples D':

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
1	sunny	warm	normal	strong	cool	change	yes
2	sunny	warm	normal	light	warm	same	yes

 $\Rightarrow S = \{ \langle \text{ sunny, warm, normal, ?, ?, ?} \rangle \}$

Question 3: Inductive Bias

A different set of examples D':

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
1	sunny	warm	normal	strong	cool	change	yes
2	sunny	warm	normal	light	warm	same	yes

 $\Rightarrow S = \{ \langle sunny, warm, normal, ?, ?, ? \rangle \}$

In particular, the following example is classified as positive:

 $\mathbf{x} = (sunny, warm, normal, strong, warm, same)$

Discussion:

 \Box What if x were a negative example?

□ What assumptions about the target concept are met a-priori by the learner?

Question 3: Inductive Bias (continued)

A different set of examples D'':

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
1	sunny	warm	normal	strong	cool	change	yes
2	cloudy	warm	normal	strong	cool	change	yes

 $\Rightarrow S = \{ \langle ?, warm, normal, strong, cool, change \rangle \}$

Question 3: Inductive Bias (continued)

A different set of examples D'':

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
1	sunny	warm	normal	strong	cool	change	yes
2	cloudy	warm	normal	strong	cool	change	yes

 $\Rightarrow S = \{ \langle ?, warm, normal, strong, cool, change \rangle \}$

3	rainy	warm	normal	strong	cool	change	no

$$\Rightarrow \quad S = \{ \}$$

Question 3: Inductive Bias (continued)

A different set of examples D'':

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySport
1	sunny	warm	normal	strong	cool	change	yes
2	cloudy	warm	normal	strong	cool	change	yes

 $\Rightarrow S = \{ \langle ?, warm, normal, strong, cool, change \rangle \}$

Observation:

The hypothesis space H should be constructed in a way to contain other possible concepts, e.g. including:

⟨ sunny, ?, ?, ?, ?, ?, ? ⟩ ∨ ⟨ cloudy, ?, ?, ?, ?, ? ⟩

Question 3: Inductive Bias (continued)

- A learning algorithm that considers all possible hypotheses as equally likely makes no a-priori assumption with regard to the target concept.
- □ A learning algorithm without a-priori assumptions has no "inductive bias".

"The policy by which an algorithm generalizes from observed training examples to classify unseen instances is its inductive bias. [...] Inductive bias is the set of assumptions that, together with the training data, deductively justify the classification by the learner to future instances."

[p.63, Mitchell 1997]

Question 3: Inductive Bias (continued)

- A learning algorithm that considers all possible hypotheses as equally likely makes no a-priori assumption with regard to the target concept.
- □ A learning algorithm without a-priori assumptions has no "inductive bias".

"The policy by which an algorithm generalizes from observed training examples to classify unseen instances is its inductive bias. [...] Inductive bias is the set of assumptions that, together with the training data, deductively justify the classification by the learner to future instances."

[p.63, Mitchell 1997]

- → A learning algorithm without inductive bias has no directive to classify unseen examples. Put another way: the learner cannot generalize.
- → A learning algorithm without inductive bias will only *memorize*.

Which of the two algorithms Finds-S and Candidate Elimination has a stronger inductive bias?

Chapter ML:II (continued)

II. Machine Learning Basics

- On Data
- □ Regression
- □ Concept Learning: Search in Hypothesis Space
- □ Concept Learning: Search in Version Space
- □ Measuring Performance

Misclassification

Definition 7 (True Misclassification Rate)

Let *X* be a feature space with a finite number of elements. Moreover, let *C* be a set of classes, let $y : X \to C$ be a classifier, and let *c* be the target concept to be learned. Then the true misclassification rate, denoted as $Err^*(y)$, is defined as follows:

$$\textit{Err}^*(y) = \frac{|\{\mathbf{x} \in X : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|X|}$$

Misclassification

Definition 7 (True Misclassification Rate)

Let *X* be a feature space with a finite number of elements. Moreover, let *C* be a set of classes, let $y : X \to C$ be a classifier, and let *c* be the target concept to be learned. Then the true misclassification rate, denoted as $Err^*(y)$, is defined as follows:

$$\textit{Err}^*(y) = \frac{|\{\mathbf{x} \in X : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|X|}$$

Problem:

 \Box Usually *c* is unknown.

Solution:

□ Estimation of $Err^*(y)$, by evaluating y on a test set for whose feature vectors c is known.

Remarks:

- The English word "rate" can be used to denote both the mathematical concept of a flow figure (a change of a quantity per time unit) as well as the mathematical concept of a portion, a percentage, or a ratio, which has a stationary (= time-independent) semantics. This latter semantics is meant here when talking about the misclassification rate.
- Unfortunately, the German word "Rate" is often (mis)used to denote the mathematical concept of a portion, a percentage, or a ratio. Taking a precise mathematical standpoint, the correct German words are "Anteil" or "Quote". I.e., a semantically correct translation of misclassification rate is "Missklassifikationsanteil", and not "Missklassifikationsrate".

Misclassification (continued)

Probabilistic foundation:

□ For $X' \subseteq X$ and $j \in C$ let P(X', j) denote the probability that a randomly drawn $\mathbf{x} \in X$ is member of X' and belongs to class j.

 \square *P* is a probability measure on *X* × *C*.

□ $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples whose elements are drawn independently from each other and according to the (same, identical) distribution$ *P*.

Let $(\mathbf{x}_0, c(\mathbf{x}_0))$ be an example drawn according to *P* and independently of *D*, and let $y : X \to C$ be a classifier learned on the basis of *D*. Then we agree on:

1.
$$P(\mathbf{x}_0 \in X', c(\mathbf{x}_0) = j) = P(X', j)$$

2. $Err^*(y) = P(c(\mathbf{x}_0) \neq y(\mathbf{x}_0) \mid D)$

Remarks:

- □ Let *A* and *B* denote two events. Then the following expressions are syntactic variants, i.e., they are semantically equivalent: P(A, B), P(A and B), $P(A \wedge B)$
- □ The elements in *D* are considered as random variables that are both independent of each other and identically distributed. This property of a set of random variables is abbreviated with "i.i.d."

Misclassification (continued)

Estimation of $Err^*(y)$ based on a finite sample $X' \subseteq X$:

$$\textit{Err}(y, X') = \frac{|\{\mathbf{x} \in X' : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|X'|}$$

Requirement:

 $\Box \ c(\mathbf{x}) \text{ must be known. Hence, } X' \subseteq \{\mathbf{x} \in X : (\mathbf{x}, c(\mathbf{x})) \in D\}$

Training Error

- $\square D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- $\Box D_{tr} = D$ is the training set.
- \Box $y: X \to C$ is a classifier learned on the basis of D_{tr} .

Training error = misclassification rate with respect to D_{tr} :

$$Err(y, D_{tr}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{tr} : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|D_{tr}|}$$

Training Error

- $\square D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- $\square D_{tr} = D$ is the training set.
- \Box $y: X \to C$ is a classifier learned on the basis of D_{tr} .

Training error = misclassification rate with respect to D_{tr} :

$$\textit{Err}(y, D_{tr}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{tr} : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|D_{tr}|}$$

Problem:

- \Box *Err*(*y*, *D*_{tr}) is based on examples that are also exploited to learn *y*.
- → $Err(y, D_{tr})$ quantifies memorization but not generalization capability of y.
- → Err(y, D_{tr}) is an optimistic estimation, i.e.,
 it is constantly lower compared to an application of y in the wild.

Holdout Estimation

 $\square D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$

 \square $D_{tr} \subset D$ is the training set.

 \Box $y: X \to C$ is a classifier learned on the basis of D_{tr} .

 \square $D_{ts} \subset D$ with $D_{ts} \cap D_{tr} = \emptyset$ is a test set.

Holdout estimation = misclassification rate with respect to D_{ts} :

$$Err(y, D_{ts}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{ts} : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|D_{ts}|}$$

Holdout Estimation

 $\square D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$

 \square $D_{tr} \subset D$ is the training set.

 \Box $y: X \to C$ is a classifier learned on the basis of D_{tr} .

 \Box $D_{ts} \subset D$ with $D_{ts} \cap D_{tr} = \emptyset$ is a test set.

Holdout estimation = misclassification rate with respect to D_{ts} :

$$Err(y, D_{ts}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{ts} : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|D_{ts}|}$$

Requirements:

- \Box D_{tr} and D_{ts} must be drawn i.i.d.
- \Box D_{tr} and D_{ts} must have similar sizes.

Remarks:

- \Box A typical value for splitting *D* into training set D_{tr} and test set D_{ts} is 2:1.
- □ When splitting *D* into D_{tr} and D_{ts} one has to ensure that the underlying distribution is maintained. Keywords: Stratification, Sample Selection Bias

Cross Validation: *k*-Fold

Improved approach for small sets D:

 \square Splitting of *D* into *k* disjoint sets D_1, \ldots, D_k of similar size.

 \Box For $i = 1, \ldots, k$ do:

1. $y_i: X \to C$ is a classifier learned on the basis of $D \setminus D_i$

2.
$$Err(y_i, D_i) = \frac{|\{(\mathbf{x}, c(\mathbf{x}) \in D_i : y_i(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D_i|}$$

 \Box $y: X \to C$ is a classifier learned on the basis of D.

Cross-validated misclassification rate:

$$\textit{Err}_{cv}(y, D, k) = rac{1}{k} \sum_{i=1}^{k} \textit{Err}(y_i, D_i)$$

Remarks:

- □ Rationale: For large *k* the set $D \setminus D_i$ is of similar size as *D*. Hence $Err^*(y_i)$ is close to $Err^*(y)$.
- □ For the construction of tree classifiers, tenfold cross-validation has been reported to give good results. [Breiman]

Cross Validation: Leave One Out

The special case of cross validation with k = n:

□ Determine the cross-validated misclassification rate for $D_i = D \setminus \{(\mathbf{x}_i, c(\mathbf{x}_i))\}$, $k \in \{1, ..., n\}$.

Cross Validation: Leave One Out

The special case of cross validation with k = n:

□ Determine the cross-validated misclassification rate for $D_i = D \setminus \{(\mathbf{x}_i, c(\mathbf{x}_i))\}$, $k \in \{1, ..., n\}$.

Problems:

 \Box High computational effort if *D* is large.

□ Singleton test sets ($|D_i| = 1$) are not stratified but contain only one class.

□ Pessimistic error estimation becomes possible.

Consider the learning algorithm "Majority decision on the basis of D", which leads for |C| = 2 and stratified samples to a misclassification rate of 1.

Bootstrapping

The idea of a multiple exploitation of *D*:

 \Box For $i = 1, \ldots, k$ do:

1. Form training set D_i by drawing n examples from D with replacement.

2. $y_i: X \to C$ is a classifier learned on the basis of D_i

3.
$$\operatorname{Err}(y_i, D \setminus D_i) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D \setminus D_i : y_i(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D \setminus D_i|}$$

 \Box $y: X \to C$ is a classifier learned on the basis of D.

Bootstrapped misclassification rate:

$$\operatorname{\textit{Err}}_{bt}(y,D) = \frac{1}{k} \sum_{i=1}^{k} \operatorname{\textit{Err}}(y_i, D \setminus D_i)$$

Remarks:

- □ The probability that an example is not considered is $(1 1/n)^n$. As a consequence, the probability that an example is considered at least once is $1 (1 1/n)^n$.
- □ If *n* is large then $1 (1 1/n)^n \approx 1 1/e \approx 0.632$. I.e., each training set contains about 63.2% of the examples in *D*.
- □ The classifiers y_1, \ldots, y_k can be used in a combined fashion as *ensemble* where the class is determined by means of a majority decision:

$$y(\mathbf{x}) = \operatorname*{argmax}_{j \in C} |\{i \in \{1, \dots, k\} : y_i(\mathbf{x}) = j\}|$$

□ For the construction of tree classifiers, bootstrapping has been reported to improve the misclassification rate about 20% - 47% compared to a standard approach.

Misclassification Cost

Use of a cost measure for the misclassification of a feature vector \mathbf{x} in class c' instead of in class c:

$$cost(c' \mid c) \begin{cases} \geq 0 & \text{if } c' \neq c \\ = 0 & \text{otherwise} \end{cases}$$

Estimation of $\textit{Err}^*_{\textit{cost}}(y)$ given a finite subset $X' \subseteq X$:

$$\textit{Err}_{\textit{cost}}(y, X') = \sum_{\mathbf{x} \in X'} \textit{cost}(y(\mathbf{x}) \mid c(\mathbf{x}))$$

Requirement:

 $\Box \ c(\mathbf{x}) \text{ must be known. I.e., } X' \subseteq \{\mathbf{x} \in X : (\mathbf{x}, c(\mathbf{x})) \in D\}$

The misclassification rate, Err, is a special case of Err_{cost} with cost 1.