
Chapter ML:III

III. Decision Trees
q Decision Trees Basics
q Impurity Functions
q Decision Tree Algorithms
q Decision Tree Pruning

ML:III-1 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Specification of Classification Problems [ML Introduction]

Characterization of the model (model world):

q X is a set of feature vectors, also called feature space.

q C is a set of classes.

q c : X → C is the ideal classifier for X.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

ML:III-2 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-ml-introduction.pdf#ml-problem-specification

Decision Trees Basics
Decision Tree for the Concept “EnjoySport”

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong warm same yes
2 sunny warm high strong warm same yes
3 rainy cold high strong warm change no
4 sunny warm high strong cool change yes

attribute: Sky

attribute: Temperature attribute: Wind

cold warm strong weak

sunny rainy
cloudy

label: yes

label: yes label: no label: yeslabel: no

ML:III-3 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Decision Tree for the Concept “EnjoySport”

Example Sky Temperature Humidity Wind Water Forecast EnjoySport

1 sunny warm normal strong warm same yes
2 sunny warm high strong warm same yes
3 rainy cold high strong warm change no
4 sunny warm high strong cool change yes

attribute: Sky

attribute: Temperature attribute: Wind

cold warm strong weak

sunny rainy
cloudy

label: yes

label: yes label: no label: yeslabel: no

Partitioning of X at the root node:

X = {x ∈ X : x|Sky = sunny} ∪ {x ∈ X : x|Sky = cloudy} ∪ {x ∈ X : x|Sky = rainy}
ML:III-4 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics

Definition 1 (Splitting)

Let X be feature space and let D be a set of examples. A splitting of X is a
partitioning of X into mutually exclusive subsets X1, . . . , Xs. I.e., X = X1 ∪ . . .∪Xs

with Xj 6= ∅ and Xj ∩Xj′ = ∅, where j, j′ ∈ {1, . . . , s}, j 6= j′.

A splitting X1, . . . , Xs of X induces a splitting D1, . . . , Ds of D, where Dj,
j = 1, . . . , s, is defined as {(x, c(x)) ∈ D | x ∈ Xj}.

ML:III-5 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics

Definition 1 (Splitting)

Let X be feature space and let D be a set of examples. A splitting of X is a
partitioning of X into mutually exclusive subsets X1, . . . , Xs. I.e., X = X1 ∪ . . .∪Xs

with Xj 6= ∅ and Xj ∩Xj′ = ∅, where j, j′ ∈ {1, . . . , s}, j 6= j′.

A splitting X1, . . . , Xs of X induces a splitting D1, . . . , Ds of D, where Dj,
j = 1, . . . , s, is defined as {(x, c(x)) ∈ D | x ∈ Xj}.

A splitting depends on the measurement scale of a feature:

1. m-ary splitting induced by a (nominal) feature A with finite domain:

A = {a1, . . . , am} : X = {x ∈ X : x|A = a1} ∪ . . . ∪ {x ∈ X : x|A = am}

ML:III-6 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-data.pdf#measurement-scale

Decision Trees Basics

Definition 1 (Splitting)

Let X be feature space and let D be a set of examples. A splitting of X is a
partitioning of X into mutually exclusive subsets X1, . . . , Xs. I.e., X = X1 ∪ . . .∪Xs

with Xj 6= ∅ and Xj ∩Xj′ = ∅, where j, j′ ∈ {1, . . . , s}, j 6= j′.

A splitting X1, . . . , Xs of X induces a splitting D1, . . . , Ds of D, where Dj,
j = 1, . . . , s, is defined as {(x, c(x)) ∈ D | x ∈ Xj}.

A splitting depends on the measurement scale of a feature:

1. m-ary splitting induced by a (nominal) feature A with finite domain:

A = {a1, . . . , am} : X = {x ∈ X : x|A = a1} ∪ . . . ∪ {x ∈ X : x|A = am}

2. Binary splitting induced by a (nominal) feature A:

A′ ⊂ A : X = {x ∈ X : x|A ∈ A′} ∪ {x ∈ X : x|A 6∈ A′}

3. Binary splitting induced by an ordinal feature A:

v ∈ dom(A) : X = {x ∈ X : x|A � v} ∪ {x ∈ X : x|A ≺ v}
ML:III-7 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-data.pdf#measurement-scale

Remarks:

q The syntax x|A denotes the projection operator, which returns that vector component
(dimension) of x = (x1, . . . , xp) that is associated with A. Without loss of generality this
projection can be presumed being unique.

q A splitting of X into two disjoint, non-empty subsets is called a binary splitting.

q We consider only splittings of X that are induced by a splitting of a single feature A of X.
Keyword: monothetic splitting

ML:III-8 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics

Definition 2 (Decision Tree)

Let X be feature space and let C be a set of classes. A decision tree T for X
and C is a finite tree with a distinguished root node. A non-leaf node t of T has
assigned (1) a set X(t) ⊆ X, (2) a splitting of X(t), and (3) a one-to-one mapping
of the subsets of the splitting to its successors.

X(t) = X iff t is root node. A leaf node of T has assigned a class from C.

ML:III-9 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-concept-learning.pdf#remarks-if-and-only-if

Decision Trees Basics

Definition 2 (Decision Tree)

Let X be feature space and let C be a set of classes. A decision tree T for X
and C is a finite tree with a distinguished root node. A non-leaf node t of T has
assigned (1) a set X(t) ⊆ X, (2) a splitting of X(t), and (3) a one-to-one mapping
of the subsets of the splitting to its successors.

X(t) = X iff t is root node. A leaf node of T has assigned a class from C.

Classification of some x ∈ X given a decision tree T :

1. Find the root node of T .

2. If t is a non-leaf node, find among its successors that node whose subset of
the splitting of X(t) contains x. Repeat this step.

3. If t is a leaf node, label x with the respective class.

Ü The set of possible decision trees forms the hypothesis space H.

ML:III-10 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-concept-learning.pdf#remarks-if-and-only-if

Remarks:

q The classification of an x ∈ X determines a unique path from the root node of T to some
leaf node of T .

q At each non-leaf node a particular feature of x is evaluated in order to find the next node
along with a possible next feature to be analyzed.

q Each path from the root node to some leaf node corresponds to a conjunction of feature
values, which are successively tested. This test can be formulated as a decision rule.
Example:

IF Sky=rainy AND Wind=weak THEN EnjoySport=yes

If all tests in T are of the kind shown in the example, namely, a comparison with a single
feature value, all feature domains must be finite.

q If in all non-leaf nodes of T only one feature is evaluated at a time, T is called a monothetic
decision tree. Examples for polythetic decision trees are the so-called oblique decision
trees.

q Decision trees became popular in 1986, with the introduction of the ID3 Algorithm by
J. R. Quinlan.

ML:III-11 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Notation

Let T be decision tree for X and C, let D be a set of examples, and let t be a node
of T . Then we agree on the following notation:

q X(t) denotes the subset of the feature space X that is represented by t.
(as used in the decision tree definition)

q D(t) denotes the subset of the example set D that is represented by t,
where D(t) = {(x, c(x)) ∈ D | x ∈ X(t)}. (see the splitting definition)

Illustration:

t1

t3t2 D(t2)

c1 c2

c3

c3 c1

c1

D(t3)

t5t4 D(t5)D(t4)

D(t1)
D(t1)

D(t2) D(t3)

D(t5)
D(t6)t6

D(t6)

ML:III-12 Decision Trees © STEIN/LETTMANN 2005-2015

Remarks:

q The set X(t) is comprised of those members x of X that are filtered by a path from the root
node of T to the node t.

q leaves(T) denotes the set of all leaf nodes of T .

q A single node t of a decision tree T , and hence T itself, encode a piecewise constant
function. This way, t as well as T can form complex non-linear classifiers. The functions
encoded by t and T differ in the number of evaluated features of x, which is one for t and
the tree height for T .

q In the following we will use the symbols “t” and “T ” to denote also the classifiers that are
encoded by a node t and a tree T respectively:

t, T : X → C (instead of yt, yT : X → C)

ML:III-13 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Algorithm Template: Construction

Algorithm: DT -construct Decision Tree Construction
Input: D (Sub)set of examples.
Output: t Root node of a decision (sub)tree.

DT-construct(D)

1. t = newNode()
label(t) = representativeClass(D)

2. IF impure(D)
THEN criterion = splitCriterion(D)
ELSE return(t)

3. {D1, . . . , Ds} = decompose(D, criterion)

4. FOREACH D′ IN {D1, . . . , Ds} DO

addSuccessor(t,DT-construct(D′))

ENDDO

5. return(t)

[Illustration]

ML:III-14 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Algorithm Template: Classification

Algorithm: DT -classify Decision Tree Classification
Input: x Feature vector.

t Root node of a decision (sub)tree.
Output: y(x) Class of feature vector x in the decision (sub)tree below t.

DT-classify(x, t)

1. IF isLeafNode(t)
THEN return(label(t))
ELSE return(DT-classify(x, splitSuccessor(t,x))

ML:III-15 Decision Trees © STEIN/LETTMANN 2005-2015

Remarks:

q Since DT -construct assigns to each node of a decision tree T a class, each subtree of T
(as well as each pruned version of a subtree of T) represents a valid decision tree on its
own.

q Functions of DT -construct :

– representativeClass(D)

Returns a representative class for the example set D. Note that, due to pruning, each
node may become a leaf node.

– impure(D)

Evaluates the (im)purity of a set D of examples.
– splitCriterion(D)

Returns a split criterion for X(t) based on the examples in D(t).
– decompose(D, criterion)

Returns a splitting of D according to criterion.
– addSuccessor(t, t′)

Inserts the successor t′ for node t.

q Functions of DT -classify :

– isLeafNode(t)

Tests whether t is a leaf node.
– splitSuccessor(t,x)

Returns the (unique) successor t′ of t for which x ∈ X(t′) holds.

ML:III-16 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
When to Use Decision Trees

Problem characteristics that may suggest a decision tree classifier:

q the objects can be described by feature-value combinations.

q the domain and range of the target function are discrete

q hypotheses take the form of disjunctions

q the training set contains noise

Selected application areas:

q medical diagnosis

q fault detection in technical systems

q risk analysis for credit approval

q basic scheduling tasks such as calendar management

q classification of design flaws in software engineering

ML:III-17 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
On the Construction of Decision Trees

q How to exploit an example set both efficiently and effectively?

q According to what rationale should a node become a leaf node?

q How to assign a class for nodes of impure example sets?

q How to evaluate decision tree performance?

ML:III-18 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees

1. Size
Among those theories that can explain an observation, the most simple one
is to be preferred (Ockham’s Razor) :

Entia non sunt multiplicanda sine necessitate.

[Johannes Clauberg 1622-1665]

Here: among all decision trees of minimum classification error we choose
the one of smallest size.

2. Classification error
Quantifies the rigor according to which a class label is assigned to x in a leaf
node of T , based on the examples in D.

If all leaf nodes of a decision tree T represent a single example of D, the
classification error of T with respect to D is zero.

ML:III-19 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees

1. Size
Among those theories that can explain an observation, the most simple one
is to be preferred (Ockham’s Razor) :

Entia non sunt multiplicanda sine necessitate.

[Johannes Clauberg 1622-1665]

Here: among all decision trees of minimum classification error we choose
the one of smallest size.

2. Classification error
Quantifies the rigor according to which a class label is assigned to x in a leaf
node of T , based on the examples in D.

If all leaf nodes of a decision tree T represent a single example of D, the
classification error of T with respect to D is zero.

ML:III-20 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees: Size

q Leaf node number
The leaf node number corresponds to number of rules that are encoded in a
decision tree.

q Tree height
The tree height corresponds to the maximum rule length and bounds the
number of premises to be evaluated to reach a class decision.

q External path length
The external path length totals the lengths of all paths from the root of a tree
to its leaf nodes. It corresponds to the space to store all rules that are
encoded in a decision tree.

q Weighted external path length
The weighted external path length is defined as the external path length
whereas each length value is weighted by the number of examples in D that
are classified by this path.

ML:III-21 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees: Size

q Leaf node number
The leaf node number corresponds to number of rules that are encoded in a
decision tree.

q Tree height
The tree height corresponds to the maximum rule length and bounds the
number of premises to be evaluated to reach a class decision.

q External path length
The external path length totals the lengths of all paths from the root of a tree
to its leaf nodes. It corresponds to the space to store all rules that are
encoded in a decision tree.

q Weighted external path length
The weighted external path length is defined as the external path length
whereas each length value is weighted by the number of examples in D that
are classified by this path.

ML:III-22 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees: Size (continued)

Both trees below correctly classify all examples in D :

attribute: color

attribute: size label: eatable 2x

small large

red brown
green

label: eatable 1x

label: eatable 1xlabel: toxic 1x

attribute: size

small large

label: eatable 2xattribute: points

yes no

Tree 1 Tree 2

label: eatable 2xlabel: toxic 1x

Criterion Tree 1 Tree 2

Leaf node number 4 3
Tree height 2 2
External path length 6 5
Weighted external path length 7 8

ML:III-23 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees: Size (continued)

Theorem 3 (External Path Length Bound)

The problem to decide for a set of examples D whether or not a decision tree
exists whose external path length is bounded by b, is NP-complete.

ML:III-24 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees: Classification Error

Given a decision tree T , a set of examples D, and a node t of T that represents
the example subset D(t) ⊆ D. Then, the class that is assigned to t, label(t), is
defined as follows:

label(t) = argmax
c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

ML:III-25 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees: Classification Error

Given a decision tree T , a set of examples D, and a node t of T that represents
the example subset D(t) ⊆ D. Then, the class that is assigned to t, label(t), is
defined as follows:

label(t) = argmax
c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

Misclassification rate of node classifier t wrt. D(t) :

Err(t,D(t)) =
|{(x, c(x)) ∈ D(t) : c(x) 6= label(t)}|

|D(t)|
= 1−max

c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

ML:III-26 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#holdout-estimation

Decision Trees Basics
Performance of Decision Trees: Classification Error

Given a decision tree T , a set of examples D, and a node t of T that represents
the example subset D(t) ⊆ D. Then, the class that is assigned to t, label(t), is
defined as follows:

label(t) = argmax
c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

Misclassification rate of node classifier t wrt. D(t) :

Err(t,D(t)) =
|{(x, c(x)) ∈ D(t) : c(x) 6= label(t)}|

|D(t)|
= 1−max

c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

Misclassification rate of decision tree classifier T wrt. D(t) :

Err (T,D) =
∑

t∈leaves(T)

|D(t)|
|D|

· Err (t,D(t))

ML:III-27 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#holdout-estimation

Remarks:

q Observe the difference between max(f) and argmax(f). Both expressions maximize f ,
whereas the former returns the maximum f -value (the image) while the latter returns the
argument (the preimage) for which f becomes maximum:

– max
c∈C

(f(c)) = max{f(c) | c ∈ C}

– argmax
c∈C

(f(c)) = c∗ ⇒ f(c∗) = max
c∈C

(f(c))

q The classifiers t and T may not have been constructed using D(t) as training data. Stated
another way, the example set D(t) is in the role of a holdout test set.

q The true misclassification rate Err ∗(T) is based on a probability measure P on X × C (and
not on relative frequencies). For a node t of T this probability becomes minimum iff:

label(t) = argmax
c∈C

P (c | X(t))

q If D has been used as training set, a reliable interpretation of the (training) error Err(T,D) in
terms of Err ∗(T) requires the Inductive Learning Hypothesis to hold. This implies, among
others, that the distribution of C over the feature space X corresponds to the distribution
of C over the training set D.

ML:III-28 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#holdout-estimation
machine-learning/unit-en-performance-measures.pdf#true-misclassification-rate
machine-learning/unit-en-concept-learning.pdf#inductive-learning-hypothesis

Decision Trees Basics
Performance of Decision Trees: Misclassification Costs

Given a decision tree T , a set of examples D, and a node t of T that represents
the example subset D(t) ⊆ D. In addition, we are given a cost measure for the
misclassification. Then, the class that is assigned to t, label(t), is defined as
follows:

label(t) = argmin
c′∈C

∑
c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

· cost(c′ | c)

ML:III-29 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Trees Basics
Performance of Decision Trees: Misclassification Costs

Given a decision tree T , a set of examples D, and a node t of T that represents
the example subset D(t) ⊆ D. In addition, we are given a cost measure for the
misclassification. Then, the class that is assigned to t, label(t), is defined as
follows:

label(t) = argmin
c′∈C

∑
c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

· cost(c′ | c)

Misclassification costs of node classifier t wrt. D(t) :

Err cost(t,D(t)) =
1

|Dt|
·
∑

(x,c(x))∈D(t)

cost(label(t)|c(x)) = min
c′∈C

∑
c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

·cost(c′|c)

ML:III-30 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#misclassification-costs

Decision Trees Basics
Performance of Decision Trees: Misclassification Costs

Given a decision tree T , a set of examples D, and a node t of T that represents
the example subset D(t) ⊆ D. In addition, we are given a cost measure for the
misclassification. Then, the class that is assigned to t, label(t), is defined as
follows:

label(t) = argmin
c′∈C

∑
c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

· cost(c′ | c)

Misclassification costs of node classifier t wrt. D(t) :

Err cost(t,D(t)) =
1

|Dt|
·
∑

(x,c(x))∈D(t)

cost(label(t)|c(x)) = min
c′∈C

∑
c∈C

|{(x, c(x)) ∈ D(t) : c(x) = c}|
|D(t)|

·cost(c′|c)

Misclassification costs of decision tree classifier T wrt. D(t) :

Err cost(T,D) =
∑

t∈leaves(T)

|D(t)|
|D|

· Err cost(t,D(t))

ML:III-31 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#misclassification-costs

Remarks:

q Again, observe the difference between min(f) and argmin(f). Both expressions minimize f ,
whereas the former returns the minimum f -value (the image) while the latter returns the
argument (the preimage) for which f becomes minimum.

ML:III-32 Decision Trees © STEIN/LETTMANN 2005-2015

Chapter ML:III

III. Decision Trees
q Decision Trees Basics
q Impurity Functions
q Decision Tree Algorithms
q Decision Tree Pruning

ML:III-33 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Splitting

Let t be a leaf node of an incomplete decision tree, and let D(t) be the subset of
the example set D that is represented by t. [Illustration]

Possible criteria for a splitting of X(t) :

1. Size of D(t).
D(t) will not be partitioned further if the number of examples, |D(t)|, is below
a certain threshold.

2. Purity of D(t).
D(t) will not be partitioned further if all examples in D are members of the
same class.

3. Ockham’s Razor.
D(t) will not be partitioned further if the resulting decision tree is not
improved significantly by the splitting.

ML:III-34 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#dtree-with-training-set

Impurity Functions
Splitting

Let t be a leaf node of an incomplete decision tree, and let D(t) be the subset of
the example set D that is represented by t. [Illustration]

Possible criteria for a splitting of X(t) :

1. Size of D(t).
D(t) will not be partitioned further if the number of examples, |D(t)|, is below
a certain threshold.

2. Purity of D(t).
D(t) will not be partitioned further if all examples in D are members of the
same class.

3. Ockham’s Razor.
D(t) will not be partitioned further if the resulting decision tree is not
improved significantly by the splitting.

ML:III-35 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#dtree-with-training-set

Impurity Functions
Splitting (continued)

Let D be a set of examples over a feature space X and a set of classes
C = {c1, c2, c3, c4}. Distribution of D for two possible splittings of X :

c1

c2

c3

c4

ML:III-36 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Splitting (continued)

Let D be a set of examples over a feature space X and a set of classes
C = {c1, c2, c3, c4}. Distribution of D for two possible splittings of X :

c1

c2

c3

c4

q The left splitting should be preferred, since it minimizes the impurity of the
subsets of D in the leaf nodes. The argumentation presumes that the
misclassification costs are independent of the classes in C.

q The impurity is a function defined on P(D), the set of all subsets of an
example set D.

ML:III-37 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions

Definition 4 (Impurity Function ι)

Let k ∈ N. An impurity function ι : [0; 1]k → R is a partial function defined on the
standard k−1-simplex ∆k−1 for which the following properties hold:

(a) ι becomes minimum at points (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1).

(b) ι is symmetric with regard to its arguments, p1, . . . , pk.

(c) ι becomes maximum at point (1/k, . . . , 1/k).

ML:III-38 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions

Definition 5 (Impurity of an Example Set ι(D))

Let D be a set of examples, let C = {c1, . . . , ck} be set of classes, and
let c : X → C be the ideal classifier for X. Moreover, let ι : [0; 1]k → R an impurity
function. Then, the impurity of D, denoted as ι(D), is defined as follows:

ι(D) = ι

(
|{(x, c(x)) ∈ D : c(x) = c1}|

|D|
, . . . ,

|{(x, c(x)) ∈ D : c(x) = ck}|
|D|

)

ML:III-39 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions

Definition 5 (Impurity of an Example Set ι(D))

Let D be a set of examples, let C = {c1, . . . , ck} be set of classes, and
let c : X → C be the ideal classifier for X. Moreover, let ι : [0; 1]k → R an impurity
function. Then, the impurity of D, denoted as ι(D), is defined as follows:

ι(D) = ι

(
|{(x, c(x)) ∈ D : c(x) = c1}|

|D|
, . . . ,

|{(x, c(x)) ∈ D : c(x) = ck}|
|D|

)

Definition 6 (Impurity Reduction ∆ι)

Let D1, . . . , Ds be a partitioning of an example set D, which is induced by a
splitting of a feature space X. Then, the resulting impurity reduction, denoted
as ∆ι(D, {D1, . . . , Ds}), is defined as follows:

∆ι(D, {D1, . . . , Ds}) = ι(D)−
s∑
j=1

|Dj|
|D|
· ι(Dj)

ML:III-40 Decision Trees © STEIN/LETTMANN 2005-2015

Remarks:

q The standard k−1-simplex comprises all k-tuples with non-negative elements that sum to 1:
∆k−1 =

{
(p1, . . . , pk) ∈ Rk :

∑k
i=1 pi = 1 and pi ≥ 0 for all i

}
q Observe the different domains of the impurity function ι in the Definitions 4 and 5, namely,

[0; 1]k and D. The domains correspond to each other: the set of examples, D, defines via its
class portions an element from [0; 1]k and vice versa.

q The properties in the definition of ι suggest to minimize the external path length of T with
respect to D in order to minimize the overall impurity characteristics of T .

q Within the DT -construct algorithm usually a greedy strategy (local optimization) is
employed to minimize the overall impurity characteristics of a decision tree T .

ML:III-41 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-tree-basics.pdf#external-path-length

Impurity Functions
Impurity Functions Based on the Misclassification Rate

Definition for two classes:

ιmisclass(p1, p2) = 1−max{p1, p2} =

{
p1 if 0 ≤ p1 ≤ 0.5

1− p1 otherwise

ιmisclass(D) = 1−max
{
|{(x, c(x)) ∈ D : c(x) = c1}|

|D|
,
|{(x, c(x)) ∈ D : c(x) = c2}|

|D|

}

ML:III-42 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#holdout-estimation

Impurity Functions
Impurity Functions Based on the Misclassification Rate

Definition for two classes:

ιmisclass(p1, p2) = 1−max{p1, p2} =

{
p1 if 0 ≤ p1 ≤ 0.5

1− p1 otherwise

ιmisclass(D) = 1−max
{
|{(x, c(x)) ∈ D : c(x) = c1}|

|D|
,
|{(x, c(x)) ∈ D : c(x) = c2}|

|D|

}

Graph of the function ιmisclass(p1, 1− p1) :

10 0.5

ι

p1
p2

0.5

[Graph: Entropy, Gini]

ML:III-43 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#holdout-estimation

Impurity Functions
Impurity Functions Based on the Misclassification Rate (continued)

Definition for k classes:

ιmisclass(p1, . . . , pk) = 1− max
i=1,...,k

pi

ιmisclass(D) = 1−max
c∈C

|{(x, c(x)) ∈ D : c(x) = c}|
|D|

ML:III-44 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#holdout-estimation

Impurity Functions
Impurity Functions Based on the Misclassification Rate (continued)

Problems:

q ∆ιmisclass = 0 may hold for all possible splittings.

q The impurity function that is induced by the misclassification rate
underestimates pure nodes (see splitting on the right-hand side):

c1

c2

ML:III-45 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#holdout-estimation

Impurity Functions
Impurity Functions Based on the Misclassification Rate (continued)

Problems:

q ∆ιmisclass = 0 may hold for all possible splittings.

q The impurity function that is induced by the misclassification rate
underestimates pure nodes (see splitting on the right-hand side):

c1

c2

∆ιmisclass = ιmisclass(D)−
(
|D1|
|D| · ιmisclass(D1) + |D2|

|D| · ιmisclass(D2)
)

left splitting: ∆ιmisclass = 1
2 − (1

2 ·
1
4 + 1

2 ·
1
4) = 1

4

right splitting: ∆ιmisclass = 1
2 − (3

4 ·
1
3 + 1

4 · 0) = 1
4

ML:III-46 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#holdout-estimation

Impurity Functions

Definition 7 (Strict Impurity Function)

Let ι : [0; 1]k → R be an impurity function and let p, p′ ∈ ∆k−1. Then ι is called
strict, if it is strictly concave:

(c) → (c’) ι(λp + (1− λ)p′) > λ ι(p) + (1− λ) ι(p′), 0 < λ < 1, p 6= p′

ML:III-47 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions

Definition 7 (Strict Impurity Function)

Let ι : [0; 1]k → R be an impurity function and let p, p′ ∈ ∆k−1. Then ι is called
strict, if it is strictly concave:

(c) → (c’) ι(λp + (1− λ)p′) > λ ι(p) + (1− λ) ι(p′), 0 < λ < 1, p 6= p′

Lemma 8

Let ι be a strict impurity function and let D1, . . . , Ds be a partitioning of an example
set D, which is induced by a splitting of a feature space X. Then the following
inequality holds:

∆ι(D, {D1, . . . , Ds}) ≥ 0

The equality is given iff for all i ∈ {1, . . . , k} and j ∈ {1, . . . , s} holds:

|{(x, c(x)) ∈ D : c(x) = ci}|
|D|

=
|{(x, c(x)) ∈ Dj : c(x) = ci}|

|Dj|

ML:III-48 Decision Trees © STEIN/LETTMANN 2005-2015

Remarks:

q Strict concavity entails Property (c) of the impurity function definition.

q For two classes, strict concavity means ι(p1, 1− p1) > 0, where 0 < p1 < 1.

q If ι is a twice differentiable function, strict concavity is equivalent with a negative definite
Hessian of ι.

q With properly chosen coefficients, polynomials of second degree fulfill the properties (a)
and (b) of the impurity function definition as well as strict concavity. See impurity functions
based on the Gini index in this regard.

q The impurity function that is induced by the misclassification rate is concave, but it is not
strictly concave.

q The proof of Lemma 8 exploits the strict concavity property of ι.

ML:III-49 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy

Definition 9 (Entropy)

Let A denote an event and let P (A) denote the occurrence probability of A. Then
the entropy (self-information, information content) of A is defined as −log 2(P (A)).

Let A be an experiment with the exclusive outcomes (events) A1, . . . , Ak. Then the
mean information content of A, denoted as H(A), is called Shannon entropy or
entropy of experiment A and is defined as follows:

H(A) = −
k∑
i=1

P (Ai) log 2(P (Ai))

ML:III-50 Decision Trees © STEIN/LETTMANN 2005-2015

Remarks:

q The smaller the occurrence probability of an event, the larger is its entropy. An event that is
certain has zero entropy.

q The Shannon entropy combines the entropies of an experiment’s outcomes, using the
outcome probabilities as weights.

q In the entropy definition we stipulate the identity 0 · log 2(0) = 0.

ML:III-51 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

Definition 10 (Conditional Entropy, Information Gain)

Let A be an experiment with the exclusive outcomes (events) A1, . . . , Ak, and let B
be another experiment with the outcomes B1, . . . , Bs. Then the conditional entropy
of the combined experiment (A | B) is defined as follows:

H(A | B) =

s∑
j=1

P (Bj) ·H(A | Bj),

where H(A | Bj) = −
k∑
i=1

P (Ai | Bj) log 2(P (Ai | Bj))

The information gain due to experiment B is defined as follows:

H(A)−H(A | B) = H(A)−
s∑
j=1

P (Bj) ·H(A | Bj)

ML:III-52 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

Definition 10 (Conditional Entropy, Information Gain)

Let A be an experiment with the exclusive outcomes (events) A1, . . . , Ak, and let B
be another experiment with the outcomes B1, . . . , Bs. Then the conditional entropy
of the combined experiment (A | B) is defined as follows:

H(A | B) =

s∑
j=1

P (Bj) ·H(A | Bj),

where H(A | Bj) = −
k∑
i=1

P (Ai | Bj) log 2(P (Ai | Bj))

The information gain due to experiment B is defined as follows:

H(A)−H(A | B) = H(A)−
s∑
j=1

P (Bj) ·H(A | Bj)

ML:III-53 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

Definition 10 (Conditional Entropy, Information Gain)

Let A be an experiment with the exclusive outcomes (events) A1, . . . , Ak, and let B
be another experiment with the outcomes B1, . . . , Bs. Then the conditional entropy
of the combined experiment (A | B) is defined as follows:

H(A | B) =

s∑
j=1

P (Bj) ·H(A | Bj),

where H(A | Bj) = −
k∑
i=1

P (Ai | Bj) log 2(P (Ai | Bj))

The information gain due to experiment B is defined as follows:

H(A)−H(A | B) = H(A)−
s∑
j=1

P (Bj) ·H(A | Bj)

ML:III-54 Decision Trees © STEIN/LETTMANN 2005-2015

Remarks [Bayes for classification] :

q Information gain is defined as reduction in entropy.

q In the context of decision trees, experiment A corresponds to classifying feature vector x
with regard to the target concept. A possible question, whose answer will inform us about
which event Ai ∈ A occurred, is the following: “Does x belong to class ci?”
Likewise, experiment B corresponds to evaluating feature B of feature vector x. A possible
question, whose answer will inform us about which event Bj ∈ B occurred, is the following:
“Does x have value bj for feature B?”

q Rationale: Typically, the events “target concept class” and “feature value” are statistically
dependent. Hence, the entropy of the event c(x) will become smaller if we learn about the
value of some feature of x (recall that the class of x is unknown). We experience an
information gain with regard to the outcome of experiment A, which is rooted in our
information about the outcome of experiment B. Under no circumstances the information
gain will be negative; the information gain is zero if the involved events are conditionally
independent:

P (Ai) = P (Ai | Bj), i ∈ {1, . . . , k}, j ∈ {1, . . . , s},

which leads to a split as specified as the special case in Lemma 8.

ML:III-55 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-bayesian-learning.pdf#remarks-bayes-for-classification

Remarks (continued) :

q Since H(A) is constant, the feature that provides the maximum information gain (= the
maximally informative feature) is given by the minimization of H(A | B).

q The expanded form of H(A | B) reads as follows:

H(A | B) = −
s∑

j=1

P (Bj) ·
k∑

i=1

P (Ai | Bj) log 2(P (Ai | Bj))

ML:III-56 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

Definition for two classes:

ιentropy(p1, p2) = −(p1 log 2(p1) + p2 log 2(p2))

ιentropy(D) =−
(
|{(x, c(x)) ∈ D : c(x) = c1}|

|D|
· log 2

|{(x, c(x)) ∈ D : c(x) = c1}|
|D|

+

|{(x, c(x)) ∈ D : c(x) = c2}|
|D|

· log 2
|{(x, c(x)) ∈ D : c(x) = c2}|

|D|

)

ML:III-57 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

Definition for two classes:

ιentropy(p1, p2) = −(p1 log 2(p1) + p2 log 2(p2))

ιentropy(D) =−
(
|{(x, c(x)) ∈ D : c(x) = c1}|

|D|
· log 2

|{(x, c(x)) ∈ D : c(x) = c1}|
|D|

+

|{(x, c(x)) ∈ D : c(x) = c2}|
|D|

· log 2
|{(x, c(x)) ∈ D : c(x) = c2}|

|D|

)

Graph of the function ιentropy(p1, 1− p1) :

10 0.5

ι

p1
p2

1.0

[Graph: Misclassification, Gini]

ML:III-58 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

Graph of the function ιentropy(p1, p2, 1− p1 − p2) :

1
y

0.8

0.6

0.4

0.2

0
0

0.2

0.4

0.6

0.8
x

1

1
y

0.8
0.6

0.4
0.2

0
0

0.6

0.2

0.8

1

0.4

1.2

0.6

1.4

0.8

1.6

x 1

E
nt

ro
py

 H

ML:III-59 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

Definition for k classes:

ιentropy(p1, . . . , pk) = −
k∑
i=1

pi log 2(pi)

ιentropy(D) = −
k∑
i=1

|{(x, c(x)) ∈ D : c(x) = ci}|
|D|

· log 2
|{(x, c(x)) ∈ D : c(x) = ci}|

|D|

ML:III-60 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

∆ιentropy corresponds to the information gain H(A)−H(A | B) :

∆ιentropy = ιentropy(D)

︸ ︷︷ ︸
H(A)

−
s∑
j=1

|Dj|
|D|
· ιentropy(Dj)

︸ ︷︷ ︸
H(A|B)

ML:III-61 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on Entropy (continued)

∆ιentropy corresponds to the information gain H(A)−H(A | B) :

∆ιentropy = ιentropy(D)

︸ ︷︷ ︸
H(A)

−
s∑
j=1

|Dj|
|D|
· ιentropy(Dj)

︸ ︷︷ ︸
H(A|B)

Legend:

q ιentropy(D) = ιentropy(P (A1), . . . , P (Ak))

q ιentropy(Dj) = ιentropy(P (A1 | Bj), . . . , P (Ak | Bj)), j = 1, . . . , s

q ιentropy(p1, . . . , pk) = −
∑k

i=1 pi · log 2(pi)

q
|Dj |
|D| = P (Bj), j = 1, . . . , s

q Ai, i = 1, . . . , k, denotes the event that x ∈ X(t) belongs to class ci. The experiment A
corresponds to the classification c : X(t)→ C.

q Bj, j = 1, . . . , s, denotes the event that x ∈ X(t) has value bj for feature B. The
experiment B corresponds to evaluating feature B and entails the following splitting:
X(t) = X(t1) ∪ . . . ∪X(ts) = {x ∈ X(t) : x|B = b1} ∪ . . . ∪ {x ∈ X(t) : x|B = bs}

q P (Ai), P (Bj), P (Ai | Bj) are estimated as relative frequencies based on D.

ML:III-62 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on the Gini Index

Definition for two classes:

ιGini(p1, p2) = 1− (p1
2 + p2

2) = 2 · p1 · p2

ιGini(D) = 2 · |{(x, c(x)) ∈ D : c(x) = c1}|
|D|

· |{(x, c(x)) ∈ D : c(x) = c2}|
|D|

ML:III-63 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on the Gini Index

Definition for two classes:

ιGini(p1, p2) = 1− (p1
2 + p2

2) = 2 · p1 · p2

ιGini(D) = 2 · |{(x, c(x)) ∈ D : c(x) = c1}|
|D|

· |{(x, c(x)) ∈ D : c(x) = c2}|
|D|

Graph of the function ιGini(p1, 1− p1) :

10 0.5

ι

p1
p2

0.5

[Graph: Misclassification, Entropy]

ML:III-64 Decision Trees © STEIN/LETTMANN 2005-2015

Impurity Functions
Impurity Functions Based on the Gini Index (continued)

Definition for k classes:

ιGini(p1, . . . , pk) = 1−
k∑
i=1

(pi)
2

ιGini(D) =

(
k∑
i=1

|{(x, c(x)) ∈ D : c(x) = ci}|
|D|

)2

−
k∑
i=1

(
|{(x, c(x)) ∈ D : c(x) = ci}|

|D|

)2

= 1−
k∑
i=1

(
|{(x, c(x)) ∈ D : c(x) = ci}|

|D|

)2

ML:III-65 Decision Trees © STEIN/LETTMANN 2005-2015

Chapter ML:III

III. Decision Trees
q Decision Trees Basics
q Impurity Functions
q Decision Tree Algorithms
q Decision Tree Pruning

ML:III-66 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Characterization of the model (model world) [ML Introduction] :

q X is a set of feature vectors, also called feature space.

q C is a set of classes.

q c : X → C is the ideal classifier for X.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

Task: Based on D, construction of a decision tree T to approximate c.

ML:III-67 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#classification-problem

Decision Tree Algorithms
ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Characterization of the model (model world) [ML Introduction] :

q X is a set of feature vectors, also called feature space.

q C is a set of classes.

q c : X → C is the ideal classifier for X.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

Task: Based on D, construction of a decision tree T to approximate c.

Characteristics of the ID3 algorithm:

1. Each splitting is based on one nominal feature and considers its complete
domain. Splitting based on feature A with domain {a1, . . . , ak} :

X = {x ∈ X : x|A = a1} ∪ . . . ∪ {x ∈ X : x|A = ak}

2. Splitting criterion is the information gain.

ML:III-68 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#classification-problem
machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Decision Tree Algorithms
ID3 Algorithm [Mitchell 1997] [algorithm template]

ID3(D, Attributes, Target)

q Create a node t for the tree.
q If all examples in D are positive, return the single-node tree t with label “+”.
q If all examples in D are negative, return the single-node tree t, with label “–”.
q Label t with the most common value of Target in D.
q If Attributes is empty, return the single-node tree t.

q Otherwise:

q Let A* be the attribute from Attributes that best classifies examples in D.
q Assign t the decision attribute A*.
q For each possible value “a” in A* do:

q Add a new tree branch below t, corresponding to the test A* = “a”.
q Let D_a be the subset of D that has value “a” for A*.
q If D_a is empty:

Then add a leaf node with label of the most common value of Target in D.
Else add the subtree ID3(D_a, Attributes \ {A*}, Target).

q Return t.

ML:III-69 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#algorithm-tdidt

Decision Tree Algorithms
ID3 Algorithm (pseudo code) [algorithm template]

ID3(D,Attributes,Target)

1. t = createNode()

2. IF ∀〈x, c(x)〉 ∈ D : c(x) = c THEN label(t) = c, return(t) ENDIF

3. label(t) = mostCommonClass(D,Target)
4. IF Attributes = ∅ THEN return(t) ENDIF

5. A∗ = argmaxA∈Attributes(informationGain(D,A))

6. FOREACH a ∈ A∗ DO

Da = {(x, c(x)) ∈ D : x|A∗ = a}
IF Da = ∅ THEN
t′ = createNode()
label(t′) = mostCommonClass(D,Target)
createEdge(t, a, t′)

ELSE
createEdge(t, a, ID3(Da,Attributes \ {A∗},Target))

ENDIF

ENDDO

7. return(t)

ML:III-70 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#algorithm-tdidt

Decision Tree Algorithms
ID3 Algorithm (pseudo code) [algorithm template]

ID3(D,Attributes,Target)

1. t = createNode()

2. IF ∀〈x, c(x)〉 ∈ D : c(x) = c THEN label(t) = c, return(t) ENDIF

3. label(t) = mostCommonClass(D,Target)
4. IF Attributes = ∅ THEN return(t) ENDIF

5. A∗ = argmaxA∈Attributes(informationGain(D,A))

6. FOREACH a ∈ A∗ DO

Da = {(x, c(x)) ∈ D : x|A∗ = a}
IF Da = ∅ THEN
t′ = createNode()
label(t′) = mostCommonClass(D,Target)
createEdge(t, a, t′)

ELSE
createEdge(t, a, ID3(Da,Attributes \ {A∗},Target))

ENDIF

ENDDO

7. return(t)

ML:III-71 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#algorithm-tdidt

Decision Tree Algorithms
ID3 Algorithm (pseudo code) [algorithm template]

ID3(D,Attributes,Target)

1. t = createNode()

2. IF ∀〈x, c(x)〉 ∈ D : c(x) = c THEN label(t) = c, return(t) ENDIF

3. label(t) = mostCommonClass(D,Target)
4. IF Attributes = ∅ THEN return(t) ENDIF

5. A∗ = argmaxA∈Attributes(informationGain(D,A))

6. FOREACH a ∈ A∗ DO

Da = {(x, c(x)) ∈ D : x|A∗ = a}
IF Da = ∅ THEN
t′ = createNode()
label(t′) = mostCommonClass(D,Target)
createEdge(t, a, t′)

ELSE
createEdge(t, a, ID3(Da,Attributes \ {A∗},Target))

ENDIF

ENDDO

7. return(t)

ML:III-72 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#algorithm-tdidt

Decision Tree Algorithms
ID3 Algorithm (pseudo code) [algorithm template]

ID3(D,Attributes,Target)

1. t = createNode()

2. IF ∀〈x, c(x)〉 ∈ D : c(x) = c THEN label(t) = c, return(t) ENDIF

3. label(t) = mostCommonClass(D,Target)
4. IF Attributes = ∅ THEN return(t) ENDIF

5. A∗ = argmaxA∈Attributes(informationGain(D,A))

6. FOREACH a ∈ A∗ DO

Da = {(x, c(x)) ∈ D : x|A∗ = a}
IF Da = ∅ THEN
t′ = createNode()
label(t′) = mostCommonClass(D,Target)
createEdge(t, a, t′)

ELSE
createEdge(t, a, ID3(Da,Attributes \ {A∗},Target))

ENDIF

ENDDO

7. return(t)

ML:III-73 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#algorithm-tdidt

Remarks:

q “Target” designates the feature (= attribute) that is comprised of the labels according to
which an example can be classified. Within Mitchell’s algorithm the respective class labels
are ‘+’ and ‘–’, modeling the binary classification situation. In the pseudo code version,
Target may be comprised of multiple (more than two) classes.

q Step 2 of of the ID3 algorithm checks the purity of D and, given this case, assigns the
unique class c, c ∈ dom(Target), as label to the respective node.

ML:III-74 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm: Example

Example set D for mushrooms, implicitly defining a feature space X over the three
dimensions color, size, and points:

Color Size Points Eatability

1 red small yes toxic
2 brown small no eatable
3 brown large yes eatable
4 green small no eatable
5 red large no eatable

ML:III-75 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature “color” :

D|color =

toxic eatable
red 1 1
brown 0 2
green 0 1

Ü |Dred| = 2, |Dbrown| = 2, |Dgreen| = 1

Estimated a-priori probabilities:

pred =
2

5
= 0.4, pbrown =

2

5
= 0.4, pgreen =

1

5
= 0.2

ML:III-76 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-impurity.pdf#splitting-feature-scale

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature “color” :

D|color =

toxic eatable
red 1 1
brown 0 2
green 0 1

Ü |Dred| = 2, |Dbrown| = 2, |Dgreen| = 1

Estimated a-priori probabilities:

pred =
2

5
= 0.4, pbrown =

2

5
= 0.4, pgreen =

1

5
= 0.2

Conditional entropy values for all attributes:

H(C | color) = −(0.4 · (12 log2
1
2 + 1

2 log2
1
2) +

0.4 · (02 log2
0
2 + 2

2 log2
2
2) +

0.2 · (01 log2
0
1 + 1

1 log2
1
1)) = 0.4

H(C | size) ≈ 0.55

H(C | points) = 0.4

ML:III-77 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-impurity.pdf#splitting-feature-scale
machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Remarks:

q The smaller H(C | feature) is, the larger becomes the information gain. Hence, the
difference H(C)−H(C | feature) needs not to be computed since H(C) is constant within
each recursion step.

q In the example, the information gain in the first recursion step is maximum for the two
features “color” and “points”.

ML:III-78 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Decision tree before the first recursion step:

attribute: points

yes no

color	 size		 eatability

red	 small	 toxic
brown	 large	 eatable

color	 size		 eatability

brown	 small	 eatable
green	 small	 eatable
red	 large	 eatable

The feature “points” was chosen in Step 5 of the ID3 algorithm.

ML:III-79 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Decision tree before the second recursion step:

attribute: points

yes no

size	 eatability

small	 toxic

size	 eatability

large	 eatable

size	 eatability

 -/-	 -/-

attribute: color

red brown
green

color	 size		 eatability

brown	 small	 eatable
green	 small	 eatable
red	 large	 eatable

The feature “color” was chosen in Step 5 of the ID3 algorithm.

ML:III-80 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm: Example (continued)

Final decision tree after second recursion step:

attribute: points

yes no

label: eatableattribute: color

red brown
green

label: toxic label: eatablelabel: toxic

Break of a tie: choosing the class “toxic” for Dgreen in Step 6 of the ID3 algorithm.

ML:III-81 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm: Hypothesis Space

+ +-

o

+ +- o +o

A1

+ +- o -

A2

+ +-

+ o

-

A2

A3 + +-

o -

-

A2

A4

...

... ...

...

...

ML:III-82 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:

q Decision tree search happens in the space of all hypotheses.

Ü The target concept is a member of the hypothesis space.

q To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.

Ü no backtracking takes place
Ü local optimization of decision trees

ML:III-83 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:

q Decision tree search happens in the space of all hypotheses.

Ü The target concept is a member of the hypothesis space.

q To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.

Ü no backtracking takes place
Ü local optimization of decision trees

ML:III-84 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a
training set for the classification of unseen feature vectors.

Observations:

q Decision tree search happens in the space of all hypotheses.

Ü The target concept is a member of the hypothesis space.

q To generate a decision tree, the ID3 algorithm needs per branch at most as
many decisions as features are given.

Ü no backtracking takes place
Ü local optimization of decision trees

Where the inductive bias of the ID3 algorithm becomes manifest:

q Small decision trees are preferred.
q Highly discriminative features tend to be closer to the root.

Is this justified?
ML:III-85 Decision Trees © STEIN/LETTMANN 2005-2015

Remarks:

q Let Aj be the finite domain (the possible values) of feature Aj, j = 1, . . . , p, and let C be a
set of classes. Then, a hypothesis space H that is comprised of all decision trees
corresponds to the set of all functions h, h : A1 × . . .×Ap → C. Typically, C = {0, 1}.

q The inductive bias of the ID3 algorithm is of a different kind than the inductive bias of the
candidate elimination algorithm (version space algorithm):

1. The underlying hypothesis space H of the candidate elimination algorithm is
incomplete. H corresponds to a coarsened view onto the space of all hypotheses since
H contains only conjunctions of attribute-value pairs as hypotheses. However, this
restricted hypothesis space is searched completely by the candidate elimination
algorithm. Keyword: restriction bias

2. The underlying hypothesis space H of the ID3 algorithm is complete. H corresponds to
the set of all discrete functions (from the Cartesian product of the feature domains onto
the set of classes) that can be represented in the form of a decision tree. However, this
complete hypothesis space is searched incompletely (following a preference).
Keyword: preference bias or search bias

q The inductive bias of the ID3 algorithm renders the algorithm robust with respect to noise.

ML:III-86 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Algorithms
CART Algorithm [Breiman 1984] [ID3 Algorithm]

Characterization of the model (model world) [ML Introduction] :

q X is a set of feature vectors, also called feature space. No restrictions are
presumed for the measurement scales of the features.

q C is a set of classes.

q c : X → C is the ideal classifier for X.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

Task: Based on D, construction of a decision tree T to approximate c.

ML:III-87 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#classification-problem
machine-learning/unit-en-data.pdf#measurement-scale

Decision Tree Algorithms
CART Algorithm [Breiman 1984] [ID3 Algorithm]

Characterization of the model (model world) [ML Introduction] :

q X is a set of feature vectors, also called feature space. No restrictions are
presumed for the measurement scales of the features.

q C is a set of classes.

q c : X → C is the ideal classifier for X.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

Task: Based on D, construction of a decision tree T to approximate c.

Characteristics of the CART algorithm:

1. Each splitting is binary and considers one feature at a time.

2. Splitting criterion is the information gain or the Gini index.

ML:III-88 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#classification-problem
machine-learning/unit-en-data.pdf#measurement-scale
machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain
machine-learning/unit-en-decision-trees-impurity.pdf#definition-impurity-gini

Decision Tree Algorithms
CART Algorithm (continued)

1. Let A be a feature with domain A. Ensure a finite number of binary splittings
for X by applying the following domain partitioning rules:

– If A is nominal, choose A′ ⊂ A such that 0 < |A′| ≤ |A \A′|.

– If A is ordinal, choose a ∈ A such that xmin < a < xmax, where xmin, xmax

are the minimum and maximum values of feature A in D.

– If A is numeric, choose a ∈ A such that a = (xk + xl)/2, where xk, xl are
consecutive elements in the ordered value list of feature A in D.

ML:III-89 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-impurity.pdf#splitting-feature-scale

Decision Tree Algorithms
CART Algorithm (continued)

1. Let A be a feature with domain A. Ensure a finite number of binary splittings
for X by applying the following domain partitioning rules:

– If A is nominal, choose A′ ⊂ A such that 0 < |A′| ≤ |A \A′|.

– If A is ordinal, choose a ∈ A such that xmin < a < xmax, where xmin, xmax

are the minimum and maximum values of feature A in D.

– If A is numeric, choose a ∈ A such that a = (xk + xl)/2, where xk, xl are
consecutive elements in the ordered value list of feature A in D.

2. For node t of a decision tree generate all splittings of the above type.

3. Choose a splitting from the set of splittings that maximizes the impurity
reduction ∆ι :

∆ι(D(t), {D(tL), D(tR)}) = ι(t)− |DL|
|D|
· ι(tL)− |DR|

|D|
· ι(tR),

where tL and tR denote the left and right successor of t.

ML:III-90 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-impurity.pdf#splitting-feature-scale
machine-learning/unit-en-decision-trees-impurity.pdf#definition-impurity-reduction

Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X corresponds to a
two-dimensional plane:

t1

t3t2 X(t2)

c1

c2c3

c3

c1

X(t3)

t5t4 X(t5)X(t4)

X(t1)

X(t6)t6

X(t6)

X(t9)

X(t7)

X(t8)

X(t4)

X(t9)

X(t7)

X(t8)

X = X(t1)

By a sequence of splittings the feature space X is partitioned into rectangles that
are parallel to the two axes.

ML:III-91 Decision Trees © STEIN/LETTMANN 2005-2015

Chapter ML:III

III. Decision Trees
q Decision Trees Basics
q Impurity Functions
q Decision Tree Algorithms
q Decision Tree Pruning

ML:III-92 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Overfitting

Definition 10 (Overfitting)

Let D be a set of examples and let H be a hypothesis space. The hypothesis
h ∈ H is considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,D) < Err (h′, D) and Err ∗(h) > Err ∗(h′),

where Err ∗(h) denotes the true misclassification rate of h, while Err(h,D) denotes the error of h on
the example set D.

ML:III-93 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#true-misclassification-rate

Decision Tree Pruning
Overfitting

Definition 10 (Overfitting)

Let D be a set of examples and let H be a hypothesis space. The hypothesis
h ∈ H is considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,D) < Err (h′, D) and Err ∗(h) > Err ∗(h′),

where Err ∗(h) denotes the true misclassification rate of h, while Err(h,D) denotes the error of h on
the example set D.

Reasons for overfitting are often rooted in the example set D :

q D is noisy

q D is biased and hence non-representative

q D is too small and hence pretends unrealistic data properties

ML:III-94 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#true-misclassification-rate

Decision Tree Pruning
Overfitting (continued)

Let Dtr ⊂ D be the training set. Then Err ∗(h) can be estimated with a test set
Dts ⊂ D where Dts ∩Dtr = ∅ (holdout estimation). The hypothesis h ∈ H is
considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,Dtr) < Err (h′, Dtr) and Err (h,Dts) > Err (h′, Dts)

ML:III-95 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#holdout-estimation

Decision Tree Pruning
Overfitting (continued)

Let Dtr ⊂ D be the training set. Then Err ∗(h) can be estimated with a test set
Dts ⊂ D where Dts ∩Dtr = ∅ (holdout estimation). The hypothesis h ∈ H is
considered to overfit D if an h′ ∈ H with the following property exists:

Err (h,Dtr) < Err (h′, Dtr) and Err (h,Dts) > Err (h′, Dts)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Size of tree (number of nodes) [Mitchell 1997]

On training data Dtr

On test data Dts

ML:III-96 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#holdout-estimation

Remarks:

q Accuracy is the percentage of correctly classified examples.

q When does Err(T,Dtr) of a decision tree T become zero?

q The training error Err(T,Dtr) of a decision tree T is a monotonically decreasing function in
the size of T . See the following Lemma.

ML:III-97 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Overfitting (continued)

Lemma 10

Let t be a node in a decision tree T . Then, for each induced splitting
D(t1), . . . , D(ts) of a set of examples D(t) holds:

Err cost(t,D(t)) ≥
∑

i∈{1,...,s}

Err cost(ti, D(ti))

The equality is given in the case that all nodes t, t1, . . . , ts represent the same
class.

ML:III-98 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-performance-measures.pdf#misclassification-costs-decision-trees

Decision Tree Pruning
Overfitting (continued)

Proof (sketch)

Err cost(t,D(t)) = min
c′∈C

∑
c∈C

p(c | t) · p(t) · cost(c′ | c)

=
∑
c∈C

p(c, t) · cost(label(t) | c)

=
∑
c∈C

(p(c, t1) + . . . + p(c, tks)) · cost(label(t) | c)

=
∑

i∈{1,...,ks}

∑
c∈C

(p(c, ti) · cost(label(t) | c)

Err cost(t,D(t))−
∑

i∈{1,...,ks}Err cost(ti, D(ti)) =∑
i∈{1,...,ks}

(∑
c∈C

p(c, ti) · cost(label(t) | c) −min
c′∈C

∑
c∈C

p(c, ti) · cost(c′ | c)

)

The summands on the right equation side are greater than or equal to zero.

ML:III-99 Decision Trees © STEIN/LETTMANN 2005-2015

Remarks:

q The lemma does also hold if the misclassification rate is used as performance measure.

q The algorithm template for the construction of decision trees, DT -construct , prefers larger
trees, entailing a more fine-grained partitioning of D. A consequence of this behavior is a
tendency to overfitting.

ML:III-100 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#misclassification-rate-decision-trees
machine-learning/unit-en-decision-trees-basics.pdf#algorithm-tdidt

Decision Tree Pruning
Overfitting (continued)

Approaches to counter overfitting:

1. Stopping of the decision tree construction process during training.

2. Pruning of a decision tree after training:

q Partitioning of D into three sets for training, validation, and test:

(a) reduced error pruning

(b) minimal cost complexity pruning

(c) rule post pruning

q statistical tests such as χ2 to assess generalization capability
q heuristic pruning

ML:III-101 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Stopping

Possible criteria for stopping [splitting criteria] :

1. Size of D(t).
D(t) will not be partitioned further if the number of examples, |D(t)|, is below
a certain threshold.

2. Purity of D(t).
D(t) will not be partitioned further if all induced splittings yield no significant
impurity reduction ∆ι.

Problems:

ad 1) A threshold that is too small results in oversized decision trees.

ad 1) A threshold that is too large omits useful splittings.

ad 2) ∆ι cannot be extrapolated with regard to the tree height.

ML:III-102 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-impurity.pdf#decision-trees-splitting-criteria

Decision Tree Pruning
Pruning

The pruning principle:

1. Construct a sufficiently large decision tree Tmax.

2. Prune Tmax, starting from the leaf nodes towards the tree root.

Each leaf node t of Tmax fulfills one or more of the following conditions:

q D(t) is sufficiently small. Typically, |D(t)| ≤ 5.

q D(t) is comprised of examples of only one class.

q D(t) is comprised of examples with identical feature vectors.

ML:III-103 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Pruning (continued)

Definition 11 (Decision Tree Pruning)

Given a decision tree T and an inner (non-root, non-leaf) node t. Then pruning
of T wrt. t is the deletion of all successor nodes of t in T . The pruned tree is
denoted as T \ Tt. The node t becomes a leaf node in T \ Tt.

Illustration:
T T \Tt

Ttt tt

ML:III-104 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let T ′ and T be two decision trees. Then T ′ � T denotes the fact that T ′ is the
result of a (possibly repeated) pruning applied to T . The relation � forms a partial
ordering on the set of all trees.

ML:III-105 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let T ′ and T be two decision trees. Then T ′ � T denotes the fact that T ′ is the
result of a (possibly repeated) pruning applied to T . The relation � forms a partial
ordering on the set of all trees.

Problems when assessing pruning candidates:

q Pruned decision trees may not stand in the �-relation.

q Starting with Tmax, promising candidates may not result from locally optimum
pruning decisions (greedy strategy).

q Its monotony disqualifies Err (T,Dtr) as an estimator for Err ∗(T). [Lemma]

ML:III-106 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Pruning (continued)

Definition 12 (Pruning-Induced Ordering)

Let T ′ and T be two decision trees. Then T ′ � T denotes the fact that T ′ is the
result of a (possibly repeated) pruning applied to T . The relation � forms a partial
ordering on the set of all trees.

Problems when assessing pruning candidates:

q Pruned decision trees may not stand in the �-relation.

q Starting with Tmax, promising candidates may not result from locally optimum
pruning decisions (greedy strategy).

q Its monotony disqualifies Err (T,Dtr) as an estimator for Err ∗(T). [Lemma]

Control pruning with validation set Dvd, where Dvd ∩Dtr = ∅, Dvd ∩Dts = ∅ :

1. Dtr ⊂ D for decision tree construction.
2. Dvd ⊂ D for overfitting analysis during pruning.
3. Dts ⊂ D for decision tree evaluation after pruning.

ML:III-107 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Pruning: Reduced Error Pruning

Reduced error pruning for decision tree Tmax and validation set Dvd :

1. T = Tmax

2. Choose an inner node t in T .

3. Tentative pruning of T wrt. t : T ′ = T \ Tt.
Based on D(t) assign class to t. [DT -construct]

4. If Err (T ′, Dvd) ≤ Err (T,Dvd) then accept pruning: T = T ′.

5. Continue with Step 2 until all inner nodes of T are tested.

ML:III-108 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#algorithm-tdidt

Decision Tree Pruning
Pruning: Reduced Error Pruning

Reduced error pruning for decision tree Tmax and validation set Dvd :

1. T = Tmax

2. Choose an inner node t in T .

3. Tentative pruning of T wrt. t : T ′ = T \ Tt.
Based on D(t) assign class to t. [DT -construct]

4. If Err (T ′, Dvd) ≤ Err (T,Dvd) then accept pruning: T = T ′.

5. Continue with Step 2 until all inner nodes of T are tested.

Problem:

If D is small, its partitioning into three sets for training, validation, and test will
discard valuable information for decision tree construction.

Improvement: rule post pruning

ML:III-109 Decision Trees © STEIN/LETTMANN 2005-2015

machine-learning/unit-en-decision-trees-basics.pdf#algorithm-tdidt

Decision Tree Pruning
Pruning: Reduced Error Pruning (continued)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Size of tree (number of nodes) [Mitchell 1997]

On training data Dtr

On test data Dts

On validation data Dvd (during pruning)

Tmax

ML:III-110 Decision Trees © STEIN/LETTMANN 2005-2015

Decision Tree Pruning
Extensions

q consideration of the misclassification cost introduced by a splitting

q “surrogate splittings” for insufficiently covered feature domains

q splittings based on (linear) combinations of features

q regression trees

ML:III-111 Decision Trees © STEIN/LETTMANN 2005-2015

	Contents
 1
	Setting

	Decision tree

	DT classification illustration

	Algorithm templates

	DT size evaluation

	DT classification evaluation

	Contents 2

	Splitting and impurity

	Impurity function

	Impurity reduction

	IR by misclassification rate

	Def: Strict impurity function

	IR by entropy

	Information gain

	IR by Gini index

	Contents 3

