
Chapter ML:VI

VI. Neural Networks
q Perceptron Learning
q Gradient Descent
q Multilayer Perceptron
q Radial Basis Functions
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Perceptron Learning
The Biological Model

Simplified model of a neuron:

cell body

dendrites

synapse

axon
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Perceptron Learning
The Biological Model (continued)

Neuron characteristics:

q The numerous dendrites of a neuron serve as its input channels for
electrical signals.

q At particular contact points between the dendrites, the so-called synapses,
electrical signals can be initiated.

q A synapse can initiate signals of different strengths, where the strength is
encoded by the frequency of a pulse train.

q The cell body of a neuron accumulates the incoming signals.

q If a particular stimulus threshold is exceeded, the cell body generates a
signal, which is output via the axon.

q The processing of the signals is unidirectional. (from left to right in the figure)
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Perceptron Learning
History

1943 Warren McCulloch and Walter Pitts present a model of the neuron.

1949 Donald Hebb postulates a new learning paradigm: reinforcement only for
active neurons. (those neurons that are involved in a decision process)

1958 Frank Rosenblatt develops the perceptron model.

1962 Rosenblatt proves the perceptron convergence theorem.

1969 Marvin Minsky and Seymour Papert publish a book on the limitations of the
perceptron model.

1970

...

1985

1986 David Rumelhart and James McClelland present the multilayer perceptron.
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Perceptron Learning
The Perceptron of Rosenblatt [1958]

Inputs Output
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Perceptron Learning
The Perceptron of Rosenblatt [1958]

Inputs Output
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xj, wj ∈ R, j = 1 . . . p
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Perceptron Learning
The Perceptron of Rosenblatt [1958]

Inputs Output
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Remarks:

q The perceptron of Rosenblatt is based on the neuron model of McCulloch and Pitts.

q The perceptron is a “feed forward system”.
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Perceptron Learning
Specification of Classification Problems [ML Introduction]

Characterization of the model (model world):

q X is a set of feature vectors, also called feature space. X ⊆ Rp

q C is a set of classes. C = {0, 1}

q c : X → C is the ideal classifier for X.

q D = {(x1, c(x1)), . . . , (xn, c(xn))} ⊆ X × C is a set of examples.

How could the hypothesis space H look like?
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Perceptron Learning
Computation in the Perceptron [Regression]

If
p∑
j=1

wjxj ≥ θ then y(x) = 1, and

if
p∑
j=1

wjxj < θ then y(x) = 0.
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Perceptron Learning
Computation in the Perceptron [Regression]

If
p∑
j=1

wjxj ≥ θ then y(x) = 1, and

if
p∑
j=1

wjxj < θ then y(x) = 0.

1

0 Σ wj ⋅xj
j=0

p

θ j=1

where
p∑
j=1

wjxj = wTx. (or other notations for the scalar product)

Ü A hypothesis is determined by θ, w1, . . . , wp.
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Perceptron Learning
Computation in the Perceptron (continued)

y(x) = heaviside(

p∑
j=1

wjxj − θ)

= heaviside(

p∑
j=0

wjxj) with w0 = −θ, x0 = 1

1

0 Σ wj ⋅xj
j=0

p

Inputs Output

xp

.

.

.

x2

x1

θ
yΣ

wp

.

.

.

w2

w1

0

w0 = −θ
x0 =1

Ü A hypothesis is determined by w0, w1, . . . , wp.

ML:VI-12 Neural Networks © STEIN 2005-2016



Remarks:

q If the weight vector is extended by w0 = −θ, and, if the feature vectors are extended by the
constant feature x0 = 1, the learning algorithm gets a canonical form. Implementations of
neural networks introduce this extension often implicitly.

q Be careful with regard to the dimensionality of the weight vector: it is always denoted as w
here, irrespective of the fact whether the w0-dimension, with w0 = −θ, is included.

q The function heaviside is named after the mathematician Oliver Heaviside.
[Heaviside: step function Oliver]
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Perceptron Learning
Weight Adaptation [IGD Algorithm]

Algorithm: PT Perceptron Training
Input: D Training examples of the form (x, c(x)) with |x| = p+ 1, c(x) ∈ {0, 1}.

η Learning rate, a small positive constant.
Internal: y(D) Set of y(x)-values computed from the elements x in D given some w.
Output: w Weight vector.

PT (D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1

4. (x, c(x)) = random_select(D)

5. error = c(x)− heaviside(wTx)

6. FOR j = 0 TO p DO

7. ∆wj = η · error · xj
8. wj = wj + ∆wj

9. ENDDO

10. UNTIL(convergence(D, y(D)) OR t > tmax)

11. return(w)
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Remarks:

q The variable t denotes the time. At each point in time the learning algorithm gets an
example presented and, as a consequence, may adapt the weight vector.

q The weight adaptation rule compares the true class c(x) (the ground truth) to the class
computed by the perceptron. In case of a wrong classification of a feature vector x, Err is
either −1 or +1—independent of the exact numeric difference between c(x) and wTx.

q y(D) is the set of y(x)-values given w for the elements x in D.
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Perceptron Learning
Weight Adaptation (continued)

x2

x1

n

x2

x1

n

d

Definition of an (affine) hyperplane: nTx = d [Wikipedia]

q n denotes a normal vector that is perpendicular to the hyperplane.

q If ||n|| = 1 then |d| corresponds to the distance of the origin to the hyperplane.

q If nTx < d and d ≥ 0 then x and the origin lie on the same side of the hyperplane.
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Perceptron Learning
Weight Adaptation (continued)

x2

x1

(w1,...,wp)T

x2

x1

θ

Definition of an (affine) hyperplane: wTx = 0 ⇔
p∑
j=1

wjxj = θ = −w0
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Remarks:

q A perceptron defines a hyperplane that is perpendicular (= normal) to (w1, . . . , wp)
T .

q θ or −w0 specify the offset of the hyperplane from the origin, along (w1, . . . , wp)
T and as

multiple of 1/||(w1, . . . , wp)
T ||.

q The set of possible weight vectors w = (w0, w1, . . . , wp)
T form the hypothesis space H.

q Weight adaptation means learning, and the shown learning paradigm is supervised.

q The computation of the weight difference ∆wj in Line 7 of the PT Algorithm considers the
feature vector x componentwise. In particular, if some xj is zero, ∆wj will be zero as well.
Keyword: Hebbian learning [Hebb 1949]
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Perceptron Learning
Illustration

A

B

q The examples are presented to the perceptron.

q The perceptron computes a value that is interpreted as class label.
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Perceptron Learning
Illustration (continued)

Encoding:

q The encoding of the examples is based on expressive features: number of
line crossings, most acute angle, longest line, etc.

q The class label, c(x), is encoded as a number. Examples from A are labeled
with 1, examples from B are labeled with 0.


x11

x12...
x1p

 . . .


xk1
xk2...
xkp


︸ ︷︷ ︸

Class A ' c(x) = 1


xl1
xl2...
xlp

 . . .


xm1

xm2...
xmp


︸ ︷︷ ︸

Class B ' c(x) = 0
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Perceptron Learning
Illustration (continued)

A possible configuration of encoded objects in the feature space X :
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Illustration (continued) [PT Algorithm]
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Perceptron Learning
Perceptron Convergence Theorem

Questions:

1. Which kind of learning tasks can be addressed with the functions of the
hypothesis space H?

2. Can the PT Algorithm construct such a function for a given task?
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Perceptron Learning
Perceptron Convergence Theorem

Questions:

1. Which kind of learning tasks can be addressed with the functions of the
hypothesis space H?

2. Can the PT Algorithm construct such a function for a given task?

Theorem 1 (Perceptron Convergence [Rosenblatt 1962])

Let X0 and X1 be two finite sets with vectors of the form x = (1, x1, . . . , xp)
T , let

X1 ∩X0 = ∅, and let ŵ define a separating hyperplane with respect to X0 and X1.
Moreover, let D be a set of examples of the form (x, 0), x ∈ X0 and (x, 1), x ∈ X1.
Then holds:

If the examples in D are processed with the PT Algorithm, the underlying weight
vector w will converge within a finite number of iterations.
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Perceptron Learning
Perceptron Convergence Theorem: Proof

Preliminaries:
q The sets X1 and X0 are separated by the hyperplane ŵ. The proof requires that for all

x ∈ X1 the inequality ŵTx > 0 holds. This condition is always fulfilled, as the following
consideration shows.
Let x′ ∈ X1 with ŵTx′ = 0. Since X0 is finite, the members x ∈ X0 have a minimum positive
distance δ with regard to the hyperplane ŵ. Hence, ŵ can be moved by δ

2 towards X0,
resulting in a new hyperplane ŵ′ that still fulfills (ŵ′)Tx < 0 for all x ∈ X0, but that now also
fulfills (ŵ′)Tx > 0 for all x ∈ X1.
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Perceptron Learning
Perceptron Convergence Theorem: Proof

Preliminaries:
q The sets X1 and X0 are separated by the hyperplane ŵ. The proof requires that for all

x ∈ X1 the inequality ŵTx > 0 holds. This condition is always fulfilled, as the following
consideration shows.
Let x′ ∈ X1 with ŵTx′ = 0. Since X0 is finite, the members x ∈ X0 have a minimum positive
distance δ with regard to the hyperplane ŵ. Hence, ŵ can be moved by δ

2 towards X0,
resulting in a new hyperplane ŵ′ that still fulfills (ŵ′)Tx < 0 for all x ∈ X0, but that now also
fulfills (ŵ′)Tx > 0 for all x ∈ X1.

q For the weight vector w that is to be constructed by the PT Algorithm, the two inequalities
must hold as well: wTx < 0 for all x ∈ X0, and wTx > 0 for all x ∈ X1.

q Consider the set X ′ = X1 ∪ {−x | x ∈ X0}: the searched w fulfills wTx > 0 for all x ∈ X ′.
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Perceptron Learning
Perceptron Convergence Theorem: Proof

Preliminaries:
q The sets X1 and X0 are separated by the hyperplane ŵ. The proof requires that for all

x ∈ X1 the inequality ŵTx > 0 holds. This condition is always fulfilled, as the following
consideration shows.
Let x′ ∈ X1 with ŵTx′ = 0. Since X0 is finite, the members x ∈ X0 have a minimum positive
distance δ with regard to the hyperplane ŵ. Hence, ŵ can be moved by δ

2 towards X0,
resulting in a new hyperplane ŵ′ that still fulfills (ŵ′)Tx < 0 for all x ∈ X0, but that now also
fulfills (ŵ′)Tx > 0 for all x ∈ X1.

q For the weight vector w that is to be constructed by the PT Algorithm, the two inequalities
must hold as well: wTx < 0 for all x ∈ X0, and wTx > 0 for all x ∈ X1.

q Consider the set X ′ = X1 ∪ {−x | x ∈ X0}: the searched w fulfills wTx > 0 for all x ∈ X ′.

q The PT Algorithm performs a number of iterations, where w(t) denotes the weight vector
for iteration t, which form the basis for the weight vector w(t+ 1). x(t) ∈ X ′ denotes the
feature vector chosen in round t, and c(x(t)) denotes the respective class label. The first
(and randomly chosen) weight vector is denoted as w(0).

q Recall the Cauchy-Schwarz inequality: ||a||2 · ||b||2 ≥ (aTb)2, where ||x|| :=
√
xTx denotes

the Euclidean norm.
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

Line of argument:
(a) A lower bound for the adapation of w can be stated. The derivation of this lower bound

exploits the presupposed linear separability of X0 and X1, which in turn guarantees the
existence of a separating hyperplane ŵ.

(b) An upper bound for the adapation of w can be stated. The derivation of this upper bound
exploits the finiteness of X0 and X1, which in turn guarantees an upper bound for the norm
of the maximum feature vector.

(c) Both bounds can be expressed as functions in the number of iterations n, where the lower
bound grows faster than the upper bound. Hence, in order to fulfill the inequality, the
number of iterations is finite.
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT Algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t).
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT Algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t).

2. Consider a sequence of n incorrectly classified feature vectors, (x(t)), along with the
corresponding weight vector adaptation, w(t+ 1) = w(t) + η · x(t) :

– w(1) = w(0) + η · x(0)

– w(2) = w(1) + η · x(1) = w(0) + η · x(0) + η · x(1)
...
– w(n) = w(0) + η · x(0) + . . .+ η · x(n− 1)
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT Algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t).

2. Consider a sequence of n incorrectly classified feature vectors, (x(t)), along with the
corresponding weight vector adaptation, w(t+ 1) = w(t) + η · x(t) :

– w(1) = w(0) + η · x(0)

– w(2) = w(1) + η · x(1) = w(0) + η · x(0) + η · x(1)
...
– w(n) = w(0) + η · x(0) + . . .+ η · x(n− 1)

3. The hyperplane defined by ŵ separates X1 and X0 : ∀x ∈ X ′ : ŵTx > 0

Let δ := min
x∈X ′

ŵTx. Observe that δ > 0 holds.
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

1. The PT Algorithm computes in iteration t the scalar product w(t)Tx(t). If classified correctly,
w(t)Tx(t) > 0 and w is unchanged. Otherwise, w(t+ 1) = w(t) + η · x(t).

2. Consider a sequence of n incorrectly classified feature vectors, (x(t)), along with the
corresponding weight vector adaptation, w(t+ 1) = w(t) + η · x(t) :

– w(1) = w(0) + η · x(0)

– w(2) = w(1) + η · x(1) = w(0) + η · x(0) + η · x(1)
...
– w(n) = w(0) + η · x(0) + . . .+ η · x(n− 1)

3. The hyperplane defined by ŵ separates X1 and X0 : ∀x ∈ X ′ : ŵTx > 0

Let δ := min
x∈X ′

ŵTx. Observe that δ > 0 holds.

4. Analyze the scalar product between w(n) and ŵ :

ŵTw(n) = ŵTw(0) + η · ŵTx(0) + . . .+ η · ŵTx(n− 1)

⇒ ŵTw(n) ≥ ŵTw(0) + nηδ ≥ 0

⇒ (ŵTw(n))2 ≥ (ŵTw(0) + nηδ)2

5. Apply the Cauchy-Schwarz inequality:

||ŵ||2 · ||w(n)||2 ≥ (ŵTw(0) + nηδ)2 ⇒ ||w(n)||2 ≥ (ŵTw(0) + nηδ)2

||ŵ||2
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

6. Consider again the weight adaptation w(t+ 1) = w(t) + η · x(t) :

||w(t+ 1)||2 = ||w(t) + η · x(t)||2

= (w(t) + η · x(t))T (w(t) + η · x(t))

= w(t)Tw(t) + η2 · x(t)Tx(t) + 2η ·w(t)Tx(t)

≤ ||w(t)||2 + ||η · x(t)||2, since w(t)Tx(t) < 0
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

6. Consider again the weight adaptation w(t+ 1) = w(t) + η · x(t) :

||w(t+ 1)||2 = ||w(t) + η · x(t)||2

= (w(t) + η · x(t))T (w(t) + η · x(t))

= w(t)Tw(t) + η2 · x(t)Tx(t) + 2η ·w(t)Tx(t)

≤ ||w(t)||2 + ||η · x(t)||2, since w(t)Tx(t) < 0

7. Consider a sequence of n weight adaptations:

||w(n)||2 ≤ ||w(n− 1)||2 + ||η · x(n− 1)||2

≤ ||w(n− 2)||2 + ||η · x(n− 2)||2 + ||η · x(n− 1)||2

≤ ||w(0)||2 + ||η · x(0)||2 + . . .+ ||η · x(n− 1)||2

= ||w(0)||2 +
n−1∑
j=0

||η · x(i)||2

8. With ε := max
x∈X ′
||x||2 follows ||w(n)||2 ≤ ||w(0)||2 + nη2ε

ML:VI-42 Neural Networks © STEIN 2005-2016



Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

9. Both inequalities must be fulfilled:

||w(n)||2 ≥ (ŵTw(0) + nηδ)2

||ŵ||2
and ||w(n)||2 ≤ ||w(0)||2 + nη2ε, hence

(ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(n)||2 ≤ ||w(0)||2 + nη2ε

10. Observe:

(ŵTw(0) + nηδ)2

||ŵ||2
∈ Θ(n2) and ||w(0)||2 + nη2ε ∈ Θ(n)
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Perceptron Learning
Perceptron Convergence Theorem: Proof (continued)

9. Both inequalities must be fulfilled:

||w(n)||2 ≥ (ŵTw(0) + nηδ)2

||ŵ||2
and ||w(n)||2 ≤ ||w(0)||2 + nη2ε, hence

(ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(n)||2 ≤ ||w(0)||2 + nη2ε

10. Observe:

(ŵTw(0) + nηδ)2

||ŵ||2
∈ Θ(n2) and ||w(0)||2 + nη2ε ∈ Θ(n)

11. An upper bound for n :
(ŵTw(0) + nηδ)2

||ŵ||2
≤ ||w(0)||2 + nη2ε

For w(0) = 0 (set all initial weights to zero) follows:

0 < n ≤ ε

δ2
||ŵ||2

Ü The PT Algorithm terminates within a finite number of iterations.
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Perceptron Learning
Perceptron Convergence Theorem: Discussion

q If a separating hyperplane between X0 and X1 exists, the PT Algorithm will
converge. If no such hyperplane exists, convergence cannot be guaranteed.

q A separating hyperplane can be found in polynomial time with linear
programming. The PT Algorithm, however, may require an exponential
number of iterations.
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Perceptron Learning
Perceptron Convergence Theorem: Discussion

q If a separating hyperplane between X0 and X1 exists, the PT Algorithm will
converge. If no such hyperplane exists, convergence cannot be guaranteed.

q A separating hyperplane can be found in polynomial time with linear
programming. The PT Algorithm, however, may require an exponential
number of iterations.

q Classification problems with noise (right-hand side) are problematic:
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Gradient Descent
Classification Error

Gradient descent considers the true error (better: the hyperplane distance) and
will converge even if X1 and X0 cannot be separated by a hyperplane. However,
this convergence process is of an asymptotic nature and no finite iteration bound
can be stated.

Gradient descent applies the so-called delta rule, which will be derived in the
following. The delta rule forms the basis of the backpropagation algorithm.
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Gradient Descent
Classification Error

Gradient descent considers the true error (better: the hyperplane distance) and
will converge even if X1 and X0 cannot be separated by a hyperplane. However,
this convergence process is of an asymptotic nature and no finite iteration bound
can be stated.

Gradient descent applies the so-called delta rule, which will be derived in the
following. The delta rule forms the basis of the backpropagation algorithm.

Consider the linear perceptron without a threshold function:

y(x) = wTx =

p∑
j=0

wjxj [Heaviside]

The classification error Err (w) of a weight vector (= hypothesis) w with regard to
D can be defined as follows:

Err (w) =
1

2

∑
(x,c(x))∈D

(c(x)− y(x))2 [Singleton error]
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Gradient Descent
Classification Error
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The gradient ∇Err (w) of Err (w) defines the steepest ascent or descent:

∇Err (w) =

(
∂Err (w)

∂w0
,
∂Err (w)

∂w1
, · · · , ∂Err (w)

∂wp

)
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Gradient Descent
Weight Adaptation

w ← w + ∆w where ∆w = −η∇Err (w)

Componentwise (dimension-wise) weight adaptation:

wj ← wj + ∆wj where ∆wj = −η ∂

∂wj
Err (w) = η

∑
(x,c(x))∈D

(c(x)−wTx) · xj
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Gradient Descent
Weight Adaptation

w ← w + ∆w where ∆w = −η∇Err (w)

Componentwise (dimension-wise) weight adaptation:

wj ← wj + ∆wj where ∆wj = −η ∂

∂wj
Err (w) = η

∑
(x,c(x))∈D

(c(x)−wTx) · xj

∂

∂wj
Err (w) =

∂

∂wj

1

2

∑
(x,c(x))∈D

(c(x)− y(x))2 =
1

2

∑
(x,c(x))∈D

∂

∂wj
(c(x)− y(x))2

=
1

2

∑
(x,c(x))∈D

2(c(x)− y(x)) · ∂

∂wj
(c(x)− y(x))

=
∑

(x,c(x))∈D

(c(x)−wTx) · ∂

∂wj
(c(x)−wTx)

=
∑

(x,c(x))∈D

(c(x)−wTx)(−xj)
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Gradient Descent
Weight Adaptation

w ← w + ∆w where ∆w = −η∇Err (w)

Componentwise (dimension-wise) weight adaptation:

wj ← wj + ∆wj where ∆wj = −η ∂

∂wj
Err (w) = η

∑
(x,c(x))∈D

(c(x)−wTx) · xj

∂

∂wj
Err (w) =

∂

∂wj

1

2

∑
(x,c(x))∈D

(c(x)− y(x))2 =
1

2

∑
(x,c(x))∈D

∂

∂wj
(c(x)− y(x))2

=
1

2

∑
(x,c(x))∈D

2(c(x)− y(x)) · ∂

∂wj
(c(x)− y(x))

=
∑

(x,c(x))∈D

(c(x)−wTx) · ∂

∂wj
(c(x)−wTx)

=
∑

(x,c(x))∈D

(c(x)−wTx)(−xj)
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Gradient Descent
Weight Adaptation

w ← w + ∆w where ∆w = −η∇Err (w)

Componentwise (dimension-wise) weight adaptation:

wj ← wj + ∆wj where ∆wj = −η ∂

∂wj
Err (w) = η

∑
(x,c(x))∈D

(c(x)−wTx) · xj

∂

∂wj
Err (w) =

∂

∂wj

1

2

∑
(x,c(x))∈D

(c(x)− y(x))2 =
1

2

∑
(x,c(x))∈D

∂

∂wj
(c(x)− y(x))2

=
1

2

∑
(x,c(x))∈D

2(c(x)− y(x)) · ∂

∂wj
(c(x)− y(x))

=
∑

(x,c(x))∈D

(c(x)−wTx) · ∂

∂wj
(c(x)−wTx)

=
∑

(x,c(x))∈D

(c(x)−wTx)(−xj)
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Gradient Descent
Weight Adaptation

w ← w + ∆w where ∆w = −η∇Err (w)

Componentwise (dimension-wise) weight adaptation:

wj ← wj + ∆wj where ∆wj = −η ∂

∂wj
Err (w) = η

∑
(x,c(x))∈D

(c(x)−wTx) · xj

∂

∂wj
Err (w) =

∂

∂wj

1

2

∑
(x,c(x))∈D

(c(x)− y(x))2 =
1

2

∑
(x,c(x))∈D

∂

∂wj
(c(x)− y(x))2

=
1

2

∑
(x,c(x))∈D

2(c(x)− y(x)) · ∂

∂wj
(c(x)− y(x))

=
∑

(x,c(x))∈D

(c(x)−wTx) · ∂

∂wj
(c(x)−wTx)

=
∑

(x,c(x))∈D

(c(x)−wTx)(−xj)
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Gradient Descent
Weight Adaptation: Batch Gradient Descent [IGD Algorithm]

Algorithm: BGD Batch Gradient Descent
Input: D Training examples of the form (x, c(x)) with |x| = p+ 1, c(x) ∈ {0, 1}.

η Learning rate, a small positive constant.
Internal: y(D) Set of y(x)-values computed from the elements x in D given some w.
Output: w Weight vector.

BGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT

3. t = t+ 1

4. FOR j = 0 TO p DO ∆wj = 0

5. FOREACH (x, c(x)) ∈ D DO

6. error = c(x)−wTx

7. FOR j = 0 TO p DO ∆wj = ∆wj + η · error · xj
8. ENDDO

9. FOR j = 0 TO p DO wj = wj + ∆wj

10. UNTIL(convergence(D, y(D)) OR t > tmax)

11. return(w)
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Gradient Descent
Weight Adaptation: Delta Rule

The weight adaptation in the BGD Algorithm is set-based: before modifying a
weight component in w, the total error of all examples (the “batch”) is computed.

Weight adaptation with regard to a single example (x, c(x)) ∈ D :

∆wj = η · (c(x)−wTx) · xj

This adaptation rule is known under different names:

q delta rule
q Widrow-Hoff rule
q adaline rule
q least mean squares (LMS) rule

The classification error Err d(w) of a weight vector (= hypothesis) w with regard to
a single example d ∈ D, d = (x, c(x)), is given as:

Err d(w) =
1

2
(c(x)−wTx)2 [Batch error]
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Gradient Descent
Weight Adaptation: Incremental Gradient Descent [Algorithms LMS BGD PT ]

Algorithm: IGD Incremental Gradient Descent
Input: D Training examples of the form (x, c(x)) with |x| = p+ 1, c(x) ∈ {0, 1}.

η Learning rate, a small positive constant.
Internal: y(D) Set of y(x)-values computed from the elements x in D given some w.
Output: w Weight vector.

IGD(D, η)

1. initialize_random_weights(w), t = 0

2. REPEAT
3. t = t+ 1

4. FOREACH (x, c(x)) ∈ D DO

5. error = c(x)−wTx

6. FOR j = 0 TO p DO
7. ∆wj = η · error · xj

wj = wj + ∆wj
8. ENDDO
9. ENDDO

10. UNTIL(convergence(D, y(D)) OR t > tmax)

11. return(w)
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Remarks:

q The classification error Err of incremental gradient descent is specific for each training
example d ∈ D, d = (x, c(x)): Err d(w) = 1

2(c(x)−wTx)2

q The sequence of incremental weight adaptations approximates the gradient descent of the
batch approach. If η is chosen sufficiently small, this approximation can happen at arbitrary
accuracy.

q The computation of the total error of batch gradient descent enables larger weight
adaptation increments.

q Compared to batch gradient descent, the example-based weight adaptation of incremental
gradient descent can better avoid getting stuck in a local minimum of the error function.
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Remarks (continued):

q The incremental gradient descend algorithm corresponds to the least mean squares (LMS)
algorithm.

q The incremental gradient descend algorithm is similar to the perceptron training (PT)
algorithm except for the fact that the latter applies the Heaviside function within the error
computation. Consequences:

– Gradient descend will converge even if the data is not linear separable.

– Provided linear separability, the PT algorithm converges within a finite number of
iterations, which, however, cannot be guaranteed for gradient descend.

– The error function of the PT algorithm is not differentiable, which prohibits an effective
exploitation of the resdiua.

q Incremental gradient descent is also called stochastic gradient descent.
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Chapter ML:VI (continued)

VI. Neural Networks
q Perceptron Learning
q Gradient Descent
q Multilayer Perceptron
q Radial Basis Functions
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Multilayer Perceptron

Definition 1 (Linear Separability)

Two sets of feature vectors, X0, X1, of a p-dimensional feature space are called
linearly separable, if p + 1 real numbers, θ, w1, . . . , wp, exist such that holds:

1. ∀x ∈ X0:
∑p

j=1wjxj < θ

2. ∀x ∈ X1:
∑p

j=1wjxj ≥ θ
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Multilayer Perceptron

Definition 1 (Linear Separability)

Two sets of feature vectors, X0, X1, of a p-dimensional feature space are called
linearly separable, if p + 1 real numbers, θ, w1, . . . , wp, exist such that holds:

1. ∀x ∈ X0:
∑p

j=1wjxj < θ

2. ∀x ∈ X1:
∑p

j=1wjxj ≥ θ
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Multilayer Perceptron
Separability

The XOR function defines the smallest example for two not linearly separable
sets:

x1 x2 XOR Class
0 0 0 B

1 0 1 A
0 1 1 A

1 1 0 B

x2 = 1

A

B

B

A

x1 = 1
x2 = 0

x1 = 0
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Multilayer Perceptron
Separability (continued)

The XOR function defines the smallest example for two not linearly separable
sets:

x1 x2 XOR Class
0 0 0 B

1 0 1 A
0 1 1 A

1 1 0 B

x2 = 1

A

B

B

A

x1 = 1
x2 = 0

x1 = 0

Ü specification of several hyperplanes
Ü combination of several perceptrons
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Multilayer Perceptron
Separability (continued)

Layered combination of several perceptrons: the multilayer perceptron.

Minimum multilayer perceptron that is able to handle the XOR problem:

Σ, θ

Σ, θ

Σ, θ

{A, B}

x1

x2

=

=
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Remarks:

q The multilayer perceptron was presented by Rumelhart and McClelland in 1986. Earlier, but
unnoticed, was a similar research work of Werbos and Parker [1974, 1982].

q Compared to a single perceptron the multilayer perceptron poses a significantly more
challenging training (= learning) problem, which requires continuous threshold functions
and sophisticated learning strategies.

q Marvin Minsky and Seymour Papert showed 1969 with the XOR problem the limitations of
single perceptrons. Moreover, they assumed that extensions of the perceptron architecture
(such as the multilayer perceptron) would be similarly limited as a single perceptron. A fatal
mistake. In fact, they brought the research in this field to a halt that lasted 17 years.
[Berkeley]

[Marvin Minsky]
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Multilayer Perceptron
Computation in the Network [Heaviside]

A perceptron with a continuous, non-linear threshold function:

Inputs Output

xp

.

.

.

x2

x1

θ
yΣ

wp

.

.

.

w2

w1

0

w0 = −θ
x0 =1

The sigmoid function σ(z) as threshold function:

σ(z) =
1

1 + e−z
where

dσ(z)

dz
= σ(z) · (1− σ(z))
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Multilayer Perceptron
Computation in the Network (continued)

Computation of the perceptron output y(x) via the sigmoid function σ:

y(x) = σ(wTx) =
1

1 + e−wTx

1

0 Σ wj ⋅xj
j=0

p

An alternative to the sigmoid function is the tanh function:

tanh(x) =
ex − e−x

ex + e−x
=
e2x − 1

e2x + 1

1

0 Σ wj ⋅xj
j=0

p
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Multilayer Perceptron
Computation in the Network (continued)

Distinguish units (nodes, perceptrons) of type input, hidden, and output:

x0 =1

Σ
x1

xp

...

feed forward

UI

=

=

=

y

UI , UH , UO Sets with units of type input, hidden, and output
wjk, ∆wjk Weight and weight adaptation for the edge connecting the units j and k
xj→k Input value (single incoming edge) for unit k, provided at the output of unit j
yk, δk Output value and classification error of unit k
wk Weight vector (all incoming edges) of unit k
x Input vector for a unit of the hidden layer
yH , yO Output vector of the hidden layer and the output layer respectively
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Multilayer Perceptron
Computation in the Network (continued)

Distinguish units (nodes, perceptrons) of type input, hidden, and output:

x0 =1

Σ
x1

xp

...

feed forward

UI

=

=

=

y

Σ

...

Σ

UH

UI , UH , UO Sets with units of type input, hidden, and output
wjk, ∆wjk Weight and weight adaptation for the edge connecting the units j and k
xj→k Input value (single incoming edge) for unit k, provided at the output of unit j
yk, δk Output value and classification error of unit k
wk Weight vector (all incoming edges) of unit k
x Input vector for a unit of the hidden layer
yH , yO Output vector of the hidden layer and the output layer respectively
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Multilayer Perceptron
Computation in the Network (continued)

Distinguish units (nodes, perceptrons) of type input, hidden, and output:

x0 =1

Σ
x1

xp

...

feed forward

UI

=

=

=

y

Σ

...

Σ

UH

Σ

Σ

...

UO

y1

yk

y2

UI , UH , UO Sets with units of type input, hidden, and output
wjk, ∆wjk Weight and weight adaptation for the edge connecting the units j and k
xj→k Input value (single incoming edge) for unit k, provided at the output of unit j
yk, δk Output value and classification error of unit k
wk Weight vector (all incoming edges) of unit k
x Input vector for a unit of the hidden layer
yH , yO Output vector of the hidden layer and the output layer respectively
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Multilayer Perceptron
Computation in the Network (continued)

Distinguish units (nodes, perceptrons) of type input, hidden, and output:

x0 =1

Σ
x1

xp

...

feed forward

UI

=

=

=

y

Σ

...

Σ

UH

Σ

Σ

...

UO

y1

yk

y2

UI , UH , UO Sets with units of type input, hidden, and output
wjk, ∆wjk Weight and weight adaptation for the edge connecting the units j and k
xj→k Input value (single incoming edge) for unit k, provided at the output of unit j
yk, δk Output value and classification error of unit k
wk Weight vector (all incoming edges) of unit k
x Input vector for a unit of the hidden layer
yH , yO Output vector of the hidden layer and the output layer respectively
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Remarks:

q The units of the input layer, UI , perform no computations at all. They distribute the input
values to the next layer.

q The network topology corresponds to a complete, bipartite graph between the units in UI
and UH as well as between the units in UH and UO.

q The non-linear characteristic of the sigmoid function makes networks possible that
approximate every function. To achieve this flexibility, only three active layers are required,
i.e., two layers with hidden units and one layer with output units. Keyword: universal
approximator [Kolmogorov Theorem, 1957]

q Multilayer perceptrons are also called multilayer networks or (artificial) neural networks,
ANN for short.
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Multilayer Perceptron
Classification Error

The classification error Err (w) is computed as sum over the |UO| = k network
outputs:

Err (w) =
1

2

∑
(x,c(x))∈D

∑
v∈UO

(cv(x)− yv(x))2

Due its complex form, Err (w) may contain various local minima:

0

4

8

12

16E
rr

(w
)
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Multilayer Perceptron
Weight Adaptation: Incremental Gradient Descent [network]

Algorithm: MPT Multilayer Perceptron Training
Input: D Training examples of the form (x, c(x)) with |x| = p+ 1, c(x) ∈ {0, 1}k.

η Learning rate, a small positive constant.
Output: w Weights of the units in UI , UH , UO.

1. initialize_random_weights(UI , UH , UO), t = 0

2. REPEAT
3. t = t+ 1

4. FOREACH (x, c(x)) ∈ D DO

5. FOREACH u ∈ UH DO yu = σ(wT
ux) // compute output of layer1

6. FOREACH v ∈ UO DO yv = σ(wT
v yH) // compute output of layer2

7. FOREACH v ∈ UO DO δv = yv · (1− yv) · (cv(x)− yv) // backpropagate layer2

8. FOREACH u ∈ UH DO δu = yu · (1− yu) ·
∑
v∈Uo

wuv · δv // backpropagate layer1

9. FOREACH wjk, (j, k) ∈ (UI × UH) ∪ (UH × UO) DO
10. ∆wjk = η · δk · xj→k
11. wjk = wjk + ∆wjk
12. ENDDO

13. ENDDO

14. UNTIL(convergence(D, yO(D)) OR t > tmax)

15. return(w)
ML:VI-75 Neural Networks © STEIN 2005-2016



Multilayer Perceptron
Weight Adaptation: Incremental Gradient Descent [network]

Algorithm: MPT Multilayer Perceptron Training
Input: D Training examples of the form (x, c(x)) with |x| = p+ 1, c(x) ∈ {0, 1}k.

η Learning rate, a small positive constant.
Output: w Weights of the units in UI , UH , UO.

1. initialize_random_weights(UI , UH , UO), t = 0

2. REPEAT
3. t = t+ 1

4. FOREACH (x, c(x)) ∈ D DO

5. FOREACH u ∈ UH DO yu = σ(wT
ux) // compute output of layer1

6. FOREACH v ∈ UO DO yv = σ(wT
v yH) // compute output of layer2

7. FOREACH v ∈ UO DO δv = yv · (1− yv) · (cv(x)− yv) // backpropagate layer2

8. FOREACH u ∈ UH DO δu = yu · (1− yu) ·
∑
v∈Uo

wuv · δv // backpropagate layer1

9. FOREACH wjk, (j, k) ∈ (UI × UH) ∪ (UH × UO) DO
10. ∆wjk = η · δk · xj→k
11. wjk = wjk + ∆wjk
12. ENDDO

13. ENDDO

14. UNTIL(convergence(D, yO(D)) OR t > tmax)

15. return(w)
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Multilayer Perceptron
Weight Adaptation: Incremental Gradient Descent [network]

Algorithm: MPT Multilayer Perceptron Training
Input: D Training examples of the form (x, c(x)) with |x| = p+ 1, c(x) ∈ {0, 1}k.

η Learning rate, a small positive constant.
Output: w Weights of the units in UI , UH , UO.

1. initialize_random_weights(UI , UH , UO), t = 0

2. REPEAT
3. t = t+ 1

4. FOREACH (x, c(x)) ∈ D DO

5. FOREACH u ∈ UH DO yu = σ(wT
ux) // compute output of layer1

6. FOREACH v ∈ UO DO yv = σ(wT
v yH) // compute output of layer2

7. FOREACH v ∈ UO DO δv = yv · (1− yv) · (cv(x)− yv) // backpropagate layer2

8. FOREACH u ∈ UH DO δu = yu · (1− yu) ·
∑
v∈Uo

wuv · δv // backpropagate layer1

9. FOREACH wjk, (j, k) ∈ (UI × UH) ∪ (UH × UO) DO
10. ∆wjk = η · δk · xj→k
11. wjk = wjk + ∆wjk
12. ENDDO

13. ENDDO

14. UNTIL(convergence(D, yO(D)) OR t > tmax)

15. return(w)
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Remarks:

q The generic delta rule (Lines 7 and 8 of the MPT algorithm) allows for a backpropagation of
the classification error and hence the training of multi-layered networks.

q Gradient descent is based on the classification error of the entire network and hence
considers the entire network weight vector.
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Multilayer Perceptron
Weight Adaptation: Momentum Term

Momentum idea: a weight adaptation in iteration t considers the adaptation in
iteration t−1 :

∆wuv(t) = η · δv · xu→v + α ·∆wuv(t− 1)

The term α, 0 ≤ α < 1, is called “momentum”.
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Multilayer Perceptron
Weight Adaptation: Momentum Term

Momentum idea: a weight adaptation in iteration t considers the adaptation in
iteration t−1 :

∆wuv(t) = η · δv · xu→v + α ·∆wuv(t− 1)

The term α, 0 ≤ α < 1, is called “momentum”.

Effects:

q due the “adaptation inertia” local minima can be overcome

q if the direction of the descent does not change, the adaptation increment
and, as a consequence, the speed of convergence is increased.
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Neural Networks
Additional Sources on the Web

Application and implementation:
q JNNS. Java Neural Network Simulator.

http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS

q SNNS. Stuttgart Neural Network Simulator.
http://www-ra.informatik.uni-tuebingen.de/software/snns
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