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Probability Basics
Area Overview
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From the area of probability theory:

q Kolmogorov Axioms

From the area of mathematical statistics:

q Naive Bayes
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Probability Basics

Definition 1 (Random Experiment, Random Observation)

A random experiment or random trial is a procedure that, at least theoretically, can
be repeated infinite times. It is characterized as follows:

1. Configuration.
A precisely specified system that can be reconstructed.

2. Procedure.
An instruction of how to execute the experiment based on the configuration.

3. Unpredictability of the outcome.

Random experiments whose configuration and procedure are not designed
artificially are called natural random experiments or natural random observations.

ML:IV-3 Statistical Learning © STEIN 2005-2015



Remarks:

q A procedure can be repeated several times using the same system, but also with equivalent
different systems.

q Random experiments are causal in the sense of cause and effect. The randomness of an
experiment (the unpredictability of its outcome) is a consequence of the missing information
about the causal chain. As a consequence, a random experiment may turn to a
deterministic process if new insights become known.
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Probability Basics

Definition 2 (Sample Space, Event Space)

A set Ω = {ω1, ω2, . . . , ωn} is called sample space of a random experiment, if each
experiment outcome is associated with at most one element ω ∈ Ω. The elements
in Ω are called outcomes.

Let Ω be a finite sample space. Each subset A ⊆ Ω is called an event; an event A
occurs iff the experiment outcome ω is a member of A. The set of all events, P(Ω),
is called the event space.
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Probability Basics

Definition 2 (Sample Space, Event Space)

A set Ω = {ω1, ω2, . . . , ωn} is called sample space of a random experiment, if each
experiment outcome is associated with at most one element ω ∈ Ω. The elements
in Ω are called outcomes.

Let Ω be a finite sample space. Each subset A ⊆ Ω is called an event; an event A
occurs iff the experiment outcome ω is a member of A. The set of all events, P(Ω),
is called the event space.

Definition 3 (Important Event Types)

Let Ω be a finite sample space, and let A ⊆ Ω and B ⊆ Ω be two events. Then we
agree on the following notation:

1. ∅ impossible event

2. Ω certain event

3. A := Ω \ A complementary event (opposite event) of A

4. |A| = 1 elementary event

5. A ⊆ B ⇔ A is a sub-event of B or “A entails B”, A⇒ B

6. A = B ⇔ A ⊆ B and B ⊆ A

7. A ∩B = ∅ ⇔ A and B are incompatible (compatible otherwise)
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Probability Basics
Classical Concept Formation

Empirical law of large numbers:

For particular events the average of the outcomes obtained from a large number
of trials is close to the expected value, and it will become closer as more trials are
performed.
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Probability Basics
Classical Concept Formation

Empirical law of large numbers:

For particular events the average of the outcomes obtained from a large number
of trials is close to the expected value, and it will become closer as more trials are
performed.

Definition 4 (Classical / Laplace Probability)

If each elementary event in Ω gets assigned the same probability, then the
probability P (A) of an event A is defined as follows:

P (A) =
|A|
|Ω|

=
number of cases favorable for A

number of total outcomes possible
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Remarks:

q A random experiment whose configuration and procedure imply an equiprobable sample
space, be it by definition or by construction, is called Laplace experiment. The probabilities
of the outcomes are called Laplace probabilities. Since they are defined by the experiment
configuration along with the experiment procedure, they need not to be estimated.

q The assumption that a given experiment is a Laplace experiment is called Laplace
assumption. If the Laplace assumption cannot be presumed, the probabilities can only be
obtained from a possibly large number of trials.

q Strictly speaking, the Laplace probability as introduced above is not a definition but a
circular definition: the probability concept is defined by means of the concept of
equiprobability, i.e., another kind of probability.

q Inspired by the empirical law of large numbers, one has tried to develop a frequentist
probability concept that is based on the (fictitious) limit of the relative frequencies
[von Mises, 1951]. The attempt failed since such a limit formation is only within mathematical
settings possible (infinitesimal calculus), where accurate repetitions unto infinity can be
made.
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Probability Basics
Axiomatic Concept Formation

The principle steps of axiomatic concept formation:

1. Postulate a function that assigns a probability to each element of the event
space.

2. Specify the basic, required properties of this function in the form of axioms.
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Probability Basics
Axiomatic Concept Formation

The principle steps of axiomatic concept formation:

1. Postulate a function that assigns a probability to each element of the event
space.

2. Specify the basic, required properties of this function in the form of axioms.

Definition 5 (Probability Measure [Kolmogorov 1933])

Let Ω be a set, called sample space, and let P(Ω) be the set of all events, called
event space. Then a function P : P(Ω)→ R that maps each event A ∈ P(Ω) onto
a real number P (A) is called probability measure, if it has the following properties:

1. P (A) ≥ 0 (Axiom I)

2. P (Ω) = 1 (Axiom II)

3. A ∩B = ∅ implies P (A ∪B) = P (A) + P (B) (Axiom III)
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Probability Basics
Axiomatic Concept Formation (continued)

Definition 6 (Probability Space)

Let Ω be a sample space, let P(Ω) be an event space, and let P : P(Ω)→ R be a
probability measure. Then the tuple (Ω, P ), as well as the triple (Ω,P(Ω), P ), is
called probability space.

ML:IV-12 Statistical Learning © STEIN 2005-2015



Probability Basics
Axiomatic Concept Formation (continued)

Definition 6 (Probability Space)

Let Ω be a sample space, let P(Ω) be an event space, and let P : P(Ω)→ R be a
probability measure. Then the tuple (Ω, P ), as well as the triple (Ω,P(Ω), P ), is
called probability space.

Theorem 7 (Implications of Kolmogorov Axioms)

1. P (A) + P (A) = 1 (from Axioms II, III)

2. P (∅) = 0 (from 1. with A = Ω)

3. Monotonicity law of the probability measure:
A ⊆ B ⇒ P (A) ≤ P (B) (from Axioms I, II)

4. P (A ∪B) = P (A) + P (B)− P (A ∩B) (from Axiom III)

5. Let A1, A2 . . . , Ak be mutually exclusive (incompatible), then holds:
P (A1 ∪ A2 ∪ . . . ∪ Ak) = P (A1) + P (A2) + . . . + P (Ak)
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Remarks:

q The three axioms are also called the axiom system of Kolmogorov.

q P (A) is denoted as the “probability of the occurrence of A”

q Observe that nothing is said about the distribution of the probabilities P .

q Generally, a function that is equipped with the three properties of a probability measure is
called a non-negative, normalized, and additive measure.
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Probability Basics
Conditional Probability

Definition 8 (Conditional Probability)

Let (Ω,P(Ω), P ) be a probability space and let A,B ∈ P(Ω) two events. Then the
probability of the occurrence of event A given that event B is known to have
occurred is defined as follows:

P (A | B) =
P (A ∩B)

P (B)
, if P (B) > 0

P (A | B) is called probability of A under condition B.
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Probability Basics
Conditional Probability (continued)

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1 ∪ . . . ∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for an B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)
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Probability Basics
Conditional Probability (continued)

Theorem 9 (Total Probability)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1 ∪ . . . ∪Ak, P (Ai) > 0, i = 1, . . . , k. Then for an B ∈ P(Ω) holds:

P (B) =

k∑
i=1

P (Ai) · P (B | Ai)

Proof

P (B) = P (Ω ∩B)

= P ((A1 ∪ . . . ∪ Ak) ∩B)

= P ((A1 ∩B) ∪ . . . ∪ (Ak ∩B))

=

k∑
i=1

P (Ai ∩B)

=

k∑
i=1

P (B ∩ Ai) =

k∑
i=1

P (Ai) · P (B | Ai)
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Remarks:

q The theorem of total probability states that the probability of an event equals the sum of the
probabilities of the sub-events into which the event has been partitioned.

q Considered as a function in parameter A and constant B, the conditional
probability P (A | B) fulfills the Kolmogorov axioms and in turn defines a probability
measure, denoted as PB here.

q Important consequences (deductions) from the conditional probability definition:

1. P (A ∩B) = P (B) · P (A | B) (see multiplication rule in Definition 10)

2. P (A ∩B) = P (B ∩ A) = P (A) · P (B | A)

3. P (B) · P (A | B) = P (A) · P (B | A)⇔ P (A | B) =
P (A ∩B)

P (B)
=

P (A) · P (B | A)

P (B)

4. P (A | B) = 1− P (A | B) or: PB(A) = 1− PB(A)

q The following inequality must usually be assumed: P (A | B) 6= 1− P (A | B).
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Probability Basics
Independence of Events

Definition 10 (Statistical Independence of two Events)

Let (Ω,P(Ω), P ) be a probability space, and let A,B ∈ P(Ω) be two events. Then A
and B are called statistically independent iff the following equation holds:

P (A ∩B) = P (A) · P (B) “multiplication rule”

If statistical independence is given for A, B, and 0 < P (B) < 1, the following
equivalences hold:

P (A ∩B) = P (A) · P (B)

⇔ P (A | B) = P (A | B)

⇔ P (A | B) = P (A)
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Probability Basics
Independence of Events (continued)

Definition 11 (Statistical Independence of k Events)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak ∈ P(Ω) be events. Then
the A1, . . . , Ak are called jointly statistically independent at P iff for all subsets
{Ai1, . . . , Ail} ⊆ {A1, . . . , Ak} the multiplication rule holds:

P (Ai1 ∩ . . . ∩ Ail) = P (Ai1) · . . . · P (Ail),

where i1 < i2 < . . . < il and 2 ≤ l ≤ k.
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Chapter ML:IV (continued)

IV. Statistical Learning
q Probability Basics
q Bayes Classification
q Maximum a-Posteriori Hypotheses
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Bayes Classification

Theorem 12 (Bayes)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1 ∪ . . . ∪ Ak, P (Ai) > 0, i = 1, . . . , k. Then for an event B ∈ P(Ω)

with P (B) > 0 holds:

P (Ai | B) =
P (Ai) · P (B | Ai)∑k
i=1 P (Ai) · P (B | Ai)

P (Ai) is called prior probability of Ai.

P (Ai | B) is called posterior probability of Ai.
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Bayes Classification

Theorem 12 (Bayes)

Let (Ω,P(Ω), P ) be a probability space, and let A1, . . . , Ak be mutually exclusive
events with Ω = A1 ∪ . . . ∪ Ak, P (Ai) > 0, i = 1, . . . , k. Then for an event B ∈ P(Ω)

with P (B) > 0 holds:

P (Ai | B) =
P (Ai) · P (B | Ai)∑k
i=1 P (Ai) · P (B | Ai)

P (Ai) is called prior probability of Ai.

P (Ai | B) is called posterior probability of Ai.

Proof
From the conditional probabilities for P (B | Ai) and P (Ai | B) follows:

P (Ai | B) =
P (B ∩ Ai)

P (B)
=
P (Ai) · P (B | Ai)

P (B)

Applying the theorem of the total probability for P (B) in the denominator will yield
the claim of the theorem.
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Bayes Classification
Combined Conditions

Let P (A | B1, . . . , Bp) denote the probability of the occurrence of event A given
that the events (conditions) B1, . . . , Bp are known to have occurred.

Applied to a classification problem:

q A corresponds to an event of kind “class=c”, and the
Bj, j = 1, . . . , p, correspond to p events of kind “attribute=value”.

q observable connection (standard situation) : B1, . . . , Bp | A

q reversed connection (diagnosis situation) : A | B1, . . . , Bp
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Bayes Classification
Combined Conditions

Let P (A | B1, . . . , Bp) denote the probability of the occurrence of event A given
that the events (conditions) B1, . . . , Bp are known to have occurred.

Applied to a classification problem:

q A corresponds to an event of kind “class=c”, and the
Bj, j = 1, . . . , p, correspond to p events of kind “attribute=value”.

q observable connection (standard situation) : B1, . . . , Bp | A

q reversed connection (diagnosis situation) : A | B1, . . . , Bp

If sufficient data for estimating P (A) and P (B1, . . . , Bp | A) is provided, then
P (A | B1, . . . , Bp) can be computed with the theorem of Bayes:

P (A | B1, . . . , Bp) =
P (A) · P (B1, . . . , Bp | A)

P (B1, . . . , Bp)
(?)
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Remarks [Information gain for classification] :

q How probability theory is applied to classification problem solving:

– Classes and attribute-value pairs are interpreted as events. The relation to an
underlying sample space Ω, Ω = {ω1, . . . , ωn}, from which the events are subsets, is not
considered.

– Observable or measurable and possibly causal connection: it is (or was in the past)
regularly observed that in situation A (e.g. a disease) the symptoms B1, . . . , Bp occur.
One may denote this as forward connection.

– Reversed connection, typically an analysis or diagnosis situation: the symptoms
B1, . . . , Bp occur, and one is interested in the likelihood that A is given or has been
occurred.

– Based on the prior probabilities of the classes (aka class priors), P (class=c), and the
probabilities of the observable connections, P (attribute=value | class=c), the
conditional class probabilities in an analysis situation, P (class=c | attribute=value), can
be computed with the theorem of Bayes.

q The class-conditional event “attribute=value | class=c” does not necessarily model a
cause-effect relation: the event “class=c” may cause—but does not need to cause—the
event “attribute=value”.
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Remarks (continued) :

q P (A | B1, . . . , Bp) is called conditional probability of A given the conditions B1, . . . , Bp.

q Alternative and semantically equivalent notations of P (A | B1, . . . , Bp) are:

1. P (A | B1, . . . , Bp)

2. P (A | B1 ∧ . . . ∧Bp)

3. P (A | B1 ∩ . . . ∩Bp)
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Bayes Classification
Naive Bayes

The compilation of a database from which reliable values for the P (B1, . . . , Bp | A)

can be obtained is often infeasible. The way out:

(a) Naive Bayes Assumption: “Given condition A, the B1, . . . , Bp are statistically
independent” (aka: the Bi are conditionally independent). Formally:

P (B1, . . . , Bp | A)
NB
=

p∏
j=1

P (Bj | A)
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Bayes Classification
Naive Bayes

The compilation of a database from which reliable values for the P (B1, . . . , Bp | A)

can be obtained is often infeasible. The way out:

(a) Naive Bayes Assumption: “Given condition A, the B1, . . . , Bp are statistically
independent” (aka: the Bi are conditionally independent). Formally:

P (B1, . . . , Bp | A)
NB
=

p∏
j=1

P (Bj | A)

(b) P (B1, . . . , Bp) is constant and hence needs not to be estimated if one is
interested only in the most likely event under the Naive Bayes Assumption,
ANB ∈ {A1, . . . , Ak}. ANB can be computed with the theorem of Bayes (?) :

argmax
A∈{A1,...,Ak}

P (A) · P (B1, . . . , Bp | A)

P (B1, . . . , Bp)
NB
= argmax

A∈{A1,...,Ak}
P (A) ·

p∏
j=1

P (Bj | A) = ANB
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Remarks:

q Why the probabilities P (B1, . . . , Bp | A) usually cannot be estimated in the wild: Suppose
that we are given k classes, and that the domains of the p attributes of a feature vector
contain minimum l values each, then for as many as k · pl different feature vectors
(= class-features-values combinations) the probability values are required. In order to
provide reliable estimates, each class-features-values combination must occur in the
database sufficiently frequently. By contrast, the estimation of the probabilities P (B | A) can
be derived from a significantly smaller database since only p · l · k combined events are
distinguished altogether.

q If the Naive Bayes Assumption applies, then the event ANB will maximize also the posterior
probability P (A | B1, . . . , Bp) as defined by the theorem of Bayes.

q Given a set of examples D, then “learning” or “training” a classifier using Naive Bayes
means to estimate the prior probabilities (class priors) P (A), where
A ∈ {c(x) | (x, c(x)) ∈ D}, as well as the probabilities of the observable connections
P (B | A), where B ∈ {Bj=xj

| xj ∈ x, (x, c(x)) ∈ D} and A = c(x). The obtained
probabilities are used in the argmax-term for ANB, which hence encodes the learned
hypothesis and functions as a classifier for new feature vectors.

q The hypothesis space H is comprised of all combinations that can be formed from all
values that can be chosen for P (A) and P (B | A). When constructing a Naive Bayes
classifier, the hypothesis space H is not explored, but the sought hypothesis is directly
computed from a data analysis of D.
Keyword: discriminative classifier versus generative classifier
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Bayes Classification
Naive Bayes (continued)

In addition to the Naive Bayes Assumption, let the following conditions apply:

(c) the set of the k classes is complete:
k∑
i=1

P (Ai) = 1, Ai ∈ {c(x) | c(x) ∈ D}

(d) the Ai are mutually exclusive: P (Ai, Aι) = 0, 1 ≤ i, ι ≤ k, i 6= ι
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Bayes Classification
Naive Bayes (continued)

In addition to the Naive Bayes Assumption, let the following conditions apply:

(c) the set of the k classes is complete:
k∑
i=1

P (Ai) = 1, Ai ∈ {c(x) | c(x) ∈ D}

(d) the Ai are mutually exclusive: P (Ai, Aι) = 0, 1 ≤ i, ι ≤ k, i 6= ι

Then holds:

P (B1, . . . , Bp)
c,d
=

k∑
i=1

P (Ai) · P (B1, . . . , Bp | Ai) (theorem of total probability)

NB
=

k∑
i=1

P (Ai) ·
p∏
j=1

P (Bj | Ai) (Naive Bayes Assumption)
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Bayes Classification
Naive Bayes (continued)

In addition to the Naive Bayes Assumption, let the following conditions apply:

(c) the set of the k classes is complete:
k∑
i=1

P (Ai) = 1, Ai ∈ {c(x) | c(x) ∈ D}

(d) the Ai are mutually exclusive: P (Ai, Aι) = 0, 1 ≤ i, ι ≤ k, i 6= ι

Then holds:

P (B1, . . . , Bp)
c,d
=

k∑
i=1

P (Ai) · P (B1, . . . , Bp | Ai) (theorem of total probability)

NB
=

k∑
i=1

P (Ai) ·
p∏
j=1

P (Bj | Ai) (Naive Bayes Assumption)

With the theorem of Bayes (?) it follows for the conditional probabilities:

P (Ai | B1, . . . , Bp) =
P (Ai) · P (B1, . . . , Bp | Ai)

P (B1, . . . , Bp)

c,d,NB
=

P (Ai) ·
∏p

j=1 P (Bj | Ai)∑k
i=1 P (Ai) ·

∏p
j=1 P (Bj | Ai)
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Remarks:

q A ranking of the A1, . . . , Ak can be computed via argmax
A∈{A1,...,Ak}

P (A) ·
∏p

j=1 P (Bj | A).

q If both (c) completeness and (d) mutually exclusiveness of the Ai can be presumed, the
total of all posterior probabilities must add up to one:

∑k
i=1 P (Ai | B1, . . . , Bp) = 1.

As a consequence, the rank order values of the Ai can be “converted into the prior
probabilities” P (Ai | B1, . . . , Bp). The normalization is obtained by dividing a rank order
value by the rank order values total, i.e.,

∑k
i=1 P (Ai) ·

∏p
j=1 P (Bj | Ai).

q The derivation above will in fact yield the true prior probabilities P (Ai | B1, . . . , Bp), if the
Naive Bayes assumption along with the completeness and exclusiveness of the Ai hold.
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Bayes Classification
Naive Bayes: Classifier Construction Summary

Let X be a p-dimensional feature space, let C be the set of k classes of a target
concept, and let D be a set of examples of the form (x, c(x)) over X ×C. Then the
k classes correspond to the events A1, . . . , Ak, and the p feature values of some
x ∈ X correspond to the events B1=x1, . . . , Bp=xp.
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Bayes Classification
Naive Bayes: Classifier Construction Summary

Let X be a p-dimensional feature space, let C be the set of k classes of a target
concept, and let D be a set of examples of the form (x, c(x)) over X ×C. Then the
k classes correspond to the events A1, . . . , Ak, and the p feature values of some
x ∈ X correspond to the events B1=x1, . . . , Bp=xp.

Construction and application of a Naive Bayes classifier:

1. Estimation of the P (A), where A = c(x), (x, c(x)) ∈ D.

2. Estimation of the P (Bj=xj | A), where xj ∈ x, (x, c(x)) ∈ D, c(x) = A.

3. Classification of a feature vector x as ANB, iff

ANB = argmax
A∈{A1,...,Ak}

P̂ (A) ·
∏
xj ∈x
j=1,...,p

P̂ (Bj=xj | A)

4. Given the conditions (c) and (d), computation of the posterior probabilities
for ANB as normalization of P̂ (ANB) ·

∏
xj ∈x
j=1,...,p

P̂ (Bj=xj | ANB).
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Remarks:

q There are at most p · l different events Bj=xj
, if l is an upper bound for the size of the p

feature domains.

q The probabilities, denoted as P (·), are unknown and estimated by the relative frequencies,
denoted as P̂ (·).

q The Naive Bayes approach is adequate for example sets D of medium size up to a very
large size.

q Strictly speaking, the Naive Bayes approach presumes that the feature values in D are
“statistically independent given the classes of the target concept”. However, experience in
the field of text classification shows that convincing classification results are achieved even
if the Naive Bayes Assumption does not hold.

q If, in addition to the rank order values, also posterior probabilities shall be computed, both
the completeness (c) and the exclusiveness (d) of the target concept classes are required.
The first requirement is also called “Closed World Assumption”, the second requirement is
also called “Single Fault Assumption”.
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Bayes Classification
Naive Bayes: Example

Outlook Temperature Humidity Wind EnjoySport

1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cold normal weak yes
6 rain cold normal strong no
7 overcast cold normal strong yes
8 sunny mild high weak no
9 sunny cold normal weak yes

10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Let the target concept c(x) of feature vector x = (sunny , cool ,high, strong) be
unknown.
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Bayes Classification
Naive Bayes: Example (continued)

Computation of ANB for x :

ANB = argmax
A∈{yes,no}

P̂ (A) ·
∏
xj ∈x
j=1,...,4

P̂ (Bj=xj | A)

= argmax
A∈{yes,no}

P̂ (A) · P̂ (Outlook=sunny | A) · P̂ (Temperature=cool | A) ·
P̂ (Humidity=high | A) · P̂ (Wind=strong | A)
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Bayes Classification
Naive Bayes: Example (continued)

Computation of ANB for x :

ANB = argmax
A∈{yes,no}

P̂ (A) ·
∏
xj ∈x
j=1,...,4

P̂ (Bj=xj | A)

= argmax
A∈{yes,no}

P̂ (A) · P̂ (Outlook=sunny | A) · P̂ (Temperature=cool | A) ·
P̂ (Humidity=high | A) · P̂ (Wind=strong | A)

“Bj=xj” denotes the event for a particular attribute-value-combination in x, namely,
that event where attribute (dimension) j has value xj.

The feature vector x = (sunny , cool ,high, strong) with the unknown target concept
gives rise to the following four events:

B1=x1 : Outlook=sunny
B2=x2 : Temperature=cool
B3=x3 : Humidity=high
B4=x4 : Wind=strong
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Bayes Classification
Naive Bayes: Example (continued)

For the classification of x altogether 2 + 4 · 2 probabilities have to be estimated:

q P̂ (EnjoySport=yes) = 9
14 = 0.64

q P̂ (EnjoySport=no) = 5
14 = 0.36

q P̂ (Wind=strong | EnjoySport=yes) = 3
9 = 0.33

q . . .
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Bayes Classification
Naive Bayes: Example (continued)

For the classification of x altogether 2 + 4 · 2 probabilities have to be estimated:

q P̂ (EnjoySport=yes) = 9
14 = 0.64

q P̂ (EnjoySport=no) = 5
14 = 0.36

q P̂ (Wind=strong | EnjoySport=yes) = 3
9 = 0.33

q . . .

Ü Ranking:

1. P̂ (EnjoySport=no) ·
∏
xj ∈x

P̂ (Bj=xj | EnjoySport=no) = 0.0206

2. P̂ (EnjoySport=yes) ·
∏
xj ∈x

P̂ (Bj=xj | EnjoySport=yes) = 0.0053
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Bayes Classification
Naive Bayes: Example (continued)

For the classification of x altogether 2 + 4 · 2 probabilities have to be estimated:

q P̂ (EnjoySport=yes) = 9
14 = 0.64

q P̂ (EnjoySport=no) = 5
14 = 0.36

q P̂ (Wind=strong | EnjoySport=yes) = 3
9 = 0.33

q . . .

Ü Ranking:

1. P̂ (EnjoySport=no) ·
∏
xj ∈x

P̂ (Bj=xj | EnjoySport=no) = 0.0206

2. P̂ (EnjoySport=yes) ·
∏
xj ∈x

P̂ (Bj=xj | EnjoySport=yes) = 0.0053

Ü Normalization: (subject to conditions (c) and (d))

1. P̂ (EnjoySport=no | x) = 0.0206
0.0053+0.0206 ≈ 80%

2. P̂ (EnjoySport=yes | x) = 0.0053
0.0053+0.0206 ≈ 20%
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