GMU:Lebendige Spiele:Organization:Landscape: Difference between revisions

From Medien Wiki
 
(3 intermediate revisions by 2 users not shown)
Line 49: Line 49:
==Risks==
==Risks==
The scale is a risk factor because synchronizing can be hard.
The scale is a risk factor because synchronizing can be hard.
*Solve by testing it. <br>
*Solve by testing it.  
<br>
The environment should be ant-friendly and make sure they cannot escape.
The environment should be ant-friendly and make sure they cannot escape.
*Solve by testing and knowledge about ants. <br>
*Solve by testing and knowledge about ants.  
<br>
The ants could die or be very inactive over a long period
The ants could die or be very inactive over a long period
*Buying or collecting another (second or third) colony <br>
*Buying or collecting another (second or third) colony  
<br>
Integration both gaming ideas to one board could be problematic <br>
Integration both gaming ideas to one board could be problematic <br>
Building a lot of board could cost a lot of time
Building a lot of board could cost a lot of time
Line 91: Line 94:


The frequency of the route-decision making points is something we can use in order to make decisions about how big the field should be in the end.
The frequency of the route-decision making points is something we can use in order to make decisions about how big the field should be in the end.
== Reference Material==
Building a good Labyrinth [http://www.astrolog.org/labyrnth/psych.htm]
Exampleof a maze we can use [https://upload.wikimedia.org/wikipedia/commons/5/59/Labyrinth_Versailles_plan.jpg]

Latest revision as of 10:05, 23 May 2017

Success Criteria

Decide on the scale of the arena for the ants

  • how fast are ants moving - how long does it take for the ants to find something
  • how fast does this compare to human movements -done
  • how many turns/intersections do we want in the environment

Discussion

  • Which areas do we want to reproduce for the ants? (Weimar, Düsseldorf Park,...)
  • integrating human movement (projection, laser pointer, little robot avatar,...)
  • before the laser cutting part we should present all ideas to the group!

Activities & Order

Think how the avatar of the human can be incorporated Feedback with human environment so the two are matching
1. Decide on the lay-out/design of the map.

  • How fast do human move? How fast the ants? (Test)
  • Which areas do we want to reproduce for the ants? (Weimar, Düsseldorf Park,...)


2. How does the board work. (Prototyping)

  • technical drawings
    • general layout
    • cleaning the board
    • integrating tracking system
    • integrating human movement (projection, laser pointer, little robot avatar,...)
  • details
    • how to insert the trigger-object
    • entrance; docking the nest
    • safety plans (air, what if they escape, ...)
    • electronics
  • material list:
    • electronics
      • Laserpointers for human avatar
      • small robot for human avatar
      • projection
    • building materials
      • wood
      • plexiglas (most logic option because of visibility)
      • plastic tubes min. 6mm
      • screws
      • glue (Holzleim and Hot glue)


3. Actual Board

  • find and prepare maps
    • www.schwarzplan.eu or www.mapbox.com, ask some architecture students, Katasteramt, googlemaps etc.
  • prepare lasercut file
  • building the actual environment

Risks

The scale is a risk factor because synchronizing can be hard.

  • Solve by testing it.


The environment should be ant-friendly and make sure they cannot escape.

  • Solve by testing and knowledge about ants.


The ants could die or be very inactive over a long period

  • Buying or collecting another (second or third) colony


Integration both gaming ideas to one board could be problematic
Building a lot of board could cost a lot of time

  • Focus on one way to play the game.

Time / Schedule

-Scale

  • experiments for the scale: first two weeks

-Combine ideas with people that are dealing with the virtual environment: after 2 weeks
A lot of things are depending on decision of other groups!

-Prototyping

  • 2 weeks
    • scale
    • opening/closing mechanics
    • human avatar
    • material test


-Preparing maps and creating laser cut file

  • 2 weeks


-Building the board

  • 2 weeks intense work
  • can be divided into teams:
    • electronics
    • actual board

Things done so far

First testing with speed of the ants. A track of 60 cm (without the dead ends, this is just the distance to the goal) with 3 intersections was accomplished in an average time of: 90 sec

Compared to humans: Humans walk 1.5 m/s That would mean that in 90 seconds they can cover a distance of 135 meters. Meaning that every 45 meters you would have a route decision making point.

The frequency of the route-decision making points is something we can use in order to make decisions about how big the field should be in the end.


Reference Material

Building a good Labyrinth [1]

Exampleof a maze we can use [2]